integration + differentiation

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/40

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

41 Terms

1
New cards

∫ kekx dx

∫ kekx dx = kekx + c

2
New cards

∫ - kekx dx

∫ - kekx dx = - kekx + c

3
New cards

∫ x-1 dx

∫ x-1 dx = ln|x| + c

4
New cards

∫ cosx dx

∫ cosx dx = sinx + c

5
New cards

∫ sinx dx

∫ sinx dx = - cosx + c

6
New cards

∫ - cosx dx

∫ - cosx dx = - sinx + c

7
New cards

∫ - sinx dx

∫ - sinx dx = cosx + c

8
New cards

∫ sec2x dx

∫ sec2x dx = tanx + c

9
New cards

∫ - sec2x dx

∫ - sec2x dx = - tanx + c

10
New cards

∫ cosec2x dx

∫ cosec2x dx = - cotx + c

11
New cards

∫ - cosec2x dx

∫ cosec2x dx = cotx + c

12
New cards

∫ cosecxcotx dx

∫ cosecxcotx dx = - cosecx + c

13
New cards

∫ - cosecxcotx dx

∫ - cosecxcotx dx = cosecx + c

14
New cards

∫ secxtanx dx

∫ secxtanx dx = secx + c

15
New cards

∫ - secxtanx dx

∫ - secxtanx dx = - secx + c

16
New cards

trapezium rule;

ba y dx ?

ba y dx ≈ ½ h (y0 + 2 (y1 + y2 + … + yn-1) + yn)

  • h = (b - a) / n

  • n = number of columns (number of strips -1)

  • yi = f (a + ih)

17
New cards

what is h in the trapezium rule?

h = (b - a) / n

  • ba y dx

  • n = number of columns (number of strips -1)

18
New cards

what is n in the trapezium rule?

n = number of columns (number of strips -1)

19
New cards

what values can we not integrate?

  • sin2x

  • cos2x

  • cot2x

  • sinxcosx

20
New cards

how do we integrate values we can’t integrate?

rewrite them using trig identities

21
New cards

how do you integrate sin2x ?

here

22
New cards

∫ sin2x dx

∫ sin2x dx = ½ x - ¼ x cosx + c

23
New cards

how do you integrate cos2x ?

here

24
New cards

∫ cos2x dx

here

25
New cards

how do you integrate cot2x ?

here

26
New cards

∫ cot2x dx

here

27
New cards

how do you integrate sinxcosx ?

here

28
New cards

∫ sinxcosx dx

here

29
New cards

INTEGRATION BY PARTS

ab dx

∫ uv’ = uv - ∫ vu’

30
New cards

PRODUCT RULE

y = uv

dy / dx = vu’ + uv’

31
New cards

QUOTIENT RULE

y = u/v

dy / dx = (vu’ - uv’) / v2

32
New cards

∫ tanx dx

∫ tanx dx = ln|secx| + c

33
New cards

∫ - tanx dx

∫ - tanx dx = - ln|secx| + c

34
New cards

∫ secx dx

∫ secx dx = ln|secx + tanx| + c

35
New cards

∫ - secx dx

∫ - secx dx = - ln|secx + tanx| + c

36
New cards

∫ cotx dx

∫ cotx dx = ln|sinx| + c

37
New cards

∫ - cotx dx

∫ - cotx dx = - ln|sinx| + c

38
New cards

∫ cosecx dx

∫ cosecx dx = - ln|cosecx + cotx| + c

39
New cards

∫ - cosecx dx

∫ - cosecx dx = ln|cosecx + cotx| + c

40
New cards

how do you make a trapezium rule estimate more accurate?

  • using more strips

  • using more trapezia

41
New cards