math 2

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/44

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

45 Terms

1
New cards
<p>A table of values for a function f is given below. Estimate the slope of the tangent line to the curve y = f (x) at x = 1. x 0.9 0.99 1.0 1.01 1.1 f (x) 2.45 2.9405 3.0 3.0605 3.65</p>

A table of values for a function f is given below. Estimate the slope of the tangent line to the curve y = f (x) at x = 1. x 0.9 0.99 1.0 1.01 1.1 f (x) 2.45 2.9405 3.0 3.0605 3.65

6 (use values around 1, don’t actually subtract 1)

<p>6 (use values around 1, don’t actually subtract 1)</p>
2
New cards

if a stone is dropped from a height of 450 meters, its position at time t seconds is given by

s(t) = 450 − 4.9t2.

a. Find the average velocity over the time interval [4, 5].

a. Average velocity on [4,5]: −44.1 m/s.

<p>a. <strong>Average velocity on [4,5]: </strong>−44.1&nbsp;m/s.</p>
3
New cards

if a stone is dropped from a height of 450 meters, its position at time t seconds is given by

s(t) = 450 − 4.9t2.

b. Estimate the instantaneous velocity at t = 4 seconds.

-39.2 m/s

<p>-39.2 m/s</p>
4
New cards
<p>lim</p><p>x→4 f (x)</p><p>b. lim</p><p>x→2 f (x)</p><p>c. lim</p><p>x→−1−</p><p>f (x)</p><p>d. lim</p><p>x→1+ f (x)</p><p>e. lim</p><p>x→1 f (x)</p><p>f. lim</p><p>x→−4 f (x)</p><p>g. lim</p><p>x→−1 f (x)</p><p>h. f (−1)</p><p>i. f (4)</p><p>j. f (3)</p>

lim

x→4 f (x)

b. lim

x→2 f (x)

c. lim

x→−1−

f (x)

d. lim

x→1+ f (x)

e. lim

x→1 f (x)

f. lim

x→−4 f (x)

g. lim

x→−1 f (x)

h. f (−1)

i. f (4)

j. f (3)

a. lim⁡x→4f(x)=1
b. lim⁡x→2f(x)=2.
c. lim⁡x→−1−f(x)=2.
d. lim⁡x→1+f(x)=0.
e. lim⁡x→1f(x)=0.
f. lim⁡x→−4f(x)does not exist (the function oscillates wildly near x=−4
g. lim⁡x→−1f(x)=2.

h. f(−1)=2
i. f(4) does not exist (there is an open circle at (4,1)
j. f(3) does not exist (no value is defined at x=3

<p>a. lim⁡x→4f(x)=1<br>b. lim⁡x→2f(x)=2.<br>c. lim⁡x→−1−f(x)=2.<br>d. lim⁡x→1+f(x)=0.<br>e. lim⁡x→1f(x)=0.<br>f. lim⁡x→−4f(x)<strong>does not exist</strong> (the function oscillates wildly near x=−4<br>g. lim⁡x→−1f(x)=2.</p><p>h. f(−1)=2<br>i. f(4) <strong>does not exist</strong> (there is an open circle at (4,1)<br>j. f(3) <strong>does not exist</strong> (no value is defined at x=3</p>
5
New cards

Q8. Evaluate the following limits using direct substitution, if possible:

c. lim

x→π(sin x + cos x)

-1

<p>-1</p>
6
New cards
<p>valuate the following limits by factoring or simplifying algebraically:</p><p>c. lim</p><p>h→0 (4 + h)2 − 16/h</p>

valuate the following limits by factoring or simplifying algebraically:

c. lim

h→0 (4 + h)2 − 16/h

8

<p>8</p>
7
New cards
<p>lim​x→1 x³-1/x²-1</p>

lim​x→1 x³-1/x²-1

3/2 difference of cubes

<p>3/2 difference of cubes</p>
8
New cards
<p>lim​t→0 t³-4t²/t²-2t</p>

lim​t→0 t³-4t²/t²-2t

0

<p>0</p>
9
New cards
<p>y³+8/y+2 y→-2</p>

y³+8/y+2 y→-2

12 difference of cubes

<p>12 difference of cubes</p>
10
New cards
<p>lim</p><p>x→0</p><p>√x + 9 − 3/</p><p>x</p>

lim

x→0

√x + 9 − 3/

x

1/6 (conjugate)

<p>1/6 (conjugate)</p>
11
New cards
<p>lim</p><p>x→4</p><p>x − 4/</p><p>√x − 2</p>

lim

x→4

x − 4/

√x − 2

4 (factor)

<p>4 (factor)</p>
12
New cards
<p>lim x→1</p><p>x − 1/</p><p>√x2 + 3 − 2</p>

lim x→1

x − 1/

√x2 + 3 − 2

2 (conjugate)

<p>2 (conjugate)</p>
13
New cards
<p>a</p>

a

5

<p>5</p>
14
New cards
<p>c</p>

c

6

<p>6</p>
15
New cards
<p>ab</p>

ab

+infinity. -infinity

<p>+infinity. -infinity</p>
16
New cards
<p>cd</p>

cd

+infinity, -infinity

<p>+infinity, -infinity</p>
17
New cards
<p>ef</p>

ef

+infinity, +infinity

<p>+infinity, +infinity</p>
18
New cards
<p>15</p>

15

continuous everywehere

<p>continuous everywehere</p>
19
New cards
<p>16</p>

16

not continuous but can be by f(1)=2

<p>not continuous but can be by f(1)=2</p>
20
New cards
<p>17</p>

17

1/3

<p>1/3</p>
21
New cards
<p>use the IVT to show that there is a root of the equation x3 − 3x + 1 = 0 between 0 and 1.</p>

use the IVT to show that there is a root of the equation x3 − 3x + 1 = 0 between 0 and 1.

there is at least one root in the interval (0,1).

<p>there is at least one root in the interval (0,1).</p>
22
New cards
<p>bc</p>

bc

∞, 0

<p>∞, 0</p>
23
New cards
<p>ef</p>

ef

−∞, 1

<p>−∞, 1</p>
24
New cards
<p>gh</p>

gh

-1,0

<p>-1,0</p>
25
New cards
<p>21</p>

21

2,-2,2

<p>2,-2,2</p>
26
New cards
<p>24</p>

24

-1/a²

<p>-1/a²</p>
27
New cards
<p>25</p>

25

4x-1

<p>4x-1</p>
28
New cards
<p>26</p>

26

knowt flashcard image
29
New cards
<p>28</p>

28

knowt flashcard image
30
New cards
<p>31</p>

31

knowt flashcard image
31
New cards
<p>32</p>

32

knowt flashcard image
32
New cards
<p>33</p>

33

knowt flashcard image
33
New cards
<p>34</p>

34

knowt flashcard image
34
New cards
<p>35</p>

35

knowt flashcard image
35
New cards
<p>37</p>

37

knowt flashcard image
36
New cards
<p>38</p>

38

knowt flashcard image
37
New cards
<p>43</p>

43

knowt flashcard image
38
New cards
<p>44</p>

44

knowt flashcard image
39
New cards
<p>46</p>

46

knowt flashcard image
40
New cards
<p>52</p>

52

knowt flashcard image
41
New cards
<p>53</p>

53

knowt flashcard image
42
New cards
<p>54</p>

54

knowt flashcard image
43
New cards
<p>57</p>

57

knowt flashcard image
44
New cards
<p>58</p>

58

knowt flashcard image
45
New cards
<p>61</p>

61

knowt flashcard image