1/20
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
p→ q
p
∴ q
Rule 1. Modus Ponens (MP)
p → q
~q
∴ ~p
Rule 2. Modus Tolles (MT)
p → q
q → r
∴ p→ r
Rule 3. Hypothetical Syllogism (HS)
p v q
~p
∴ q
Rule 4. Disjunctive Syllogism (DS)
q v p
~q
∴ p
Rule 4. Disjunctive Syllogism (DS)
p v q
p → r
q → s
∴ r v s
Rule 5. Constructive Dilemma (CD)
p • q
∴p
Rule 6. Simplification (Simp)
q • p
∴q
Rule 6. Simplification (Simp)
p
q
∴ p • q
Rule 7. Conjunction (Conj)
p
∴ p v q
Rule 8. Addition (Add)
q
∴ q v p
Rule 8. Addition (Add)
p : : ~~p
Rule 9. Double negation (DN)
If p is a statment in a proof, we can replace it with ~~p.
p v q : : q v p / p • q :: q • p
Rule 10. Commutation (Com)
p v (q v r) :: (p v q) v r / (Can also be •)
Rule 11. Association (As)
~(p v q) :: ~p • ~q (Can be reversed)
Rule 12. DeMorgan’s law (DeM)
p → q :: ~q → ~p
Rule 13. Contraposition (Cont)
p • (q v r) :: (p • q) v (p • r)
(v & • can be inverted)
Rule 14. Distribution (Dist)
(p • q) → r :: p → (q → r)
Rule 15. Exportation (Exp)
p :: p • p / p :: p v p
Rule 16. Redundancy (Re)
p ←→ q :: (p → q) • (q → p)
p ←→ q :: (p • q) v (~q • ~p)
Rule 17. Material Equivalence (ME)
p → q :: ~p v q
Rule 18. Material Implication (MI)