1/49
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
\frac{d}{dx}\left(c\right)
0
\frac{d}{dx}\left(kx\right)
k
\frac{d}{dx}\left(x^{n}\right)
nx^{n-1}
\frac{d}{dx}\left(e^{x}\right)
e^{x}
\frac{d}{dx}\left(a^{x}\right)
a^{x}\ln a
\frac{d}{dx}\left(\ln x\right)
\frac{1}{x}
\frac{d}{dx}\left(\log_{a}x\right)
\frac{1}{x\ln a}
\frac{d}{dx}\left(\sin x\right)
\cos x
\frac{d}{dx}\left(\cos x\right)
-\sin x
\frac{d}{dx}\left(\tan x\right)
\sec^2x
\frac{d}{dx}\left(\sec x\right)
\sec x\tan x
\frac{d}{dx}\left(\cot x\right)
-\csc^2x
\frac{d}{dx}\left(\csc x\right)
-\csc x\cot x
\frac{d}{dx}\left(\sin^{-1}x\right)
\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}\left(\cos^{-1}x\right)
-\frac{1}{\sqrt{1-x^2}}
\frac{d}{dx}\left(\tan^{-1}x\right)
\frac{1}{1+x^2}
\frac{d}{dx}\left(\sec^{-1}x\right)
\frac{1}{\left|x\right|\sqrt{x^2-1}}
\frac{d}{dx}\left(\cot^{-1}x\right)
-\frac{1}{1+x^2}
\frac{d}{dx}\left(\csc^{-1}x\right)
-\frac{1}{\left|x\right|\sqrt{x^2-1}}
\frac{d}{dx}\left(cf\left(x\right)\right)
c\cdot f^{\prime}\left(x\right)
\frac{d}{dx}\left(f\left(x\right)+g\left(x\right)\right)
f^{\prime}\left(x\right)+g^{\prime}\left(x\right)
\frac{d}{dx}\left(f\left(x\right)\cdot g\left(x\right)\right)
f^{\prime}\left(x\right)g\left(x\right)+f\left(x\right)g^{\prime}\left(x\right)
\frac{d}{dx}\left(\frac{f\left(x\right)}{g\left(x\right)}\right)
\frac{f^{\prime}\left(x\right)g\left(x\right)-f\left(x\right)g^{\prime}\left(x\right)}{\left(g^{\prime}\left(x\right)\right)^2}
Limit definition of a derivative
f^{\prime}\left(a\right)=\lim_{h\to o}\frac{f\left(a+h\right)-f\left(a\right)}{h} at x=a
secant line
a line passing through two points of a curve
tangent line
a line that touches a curve at a single point
derivative
instantaneous rate of change; slope of tangent
implicit differentiation
a technique for computing dy/dx for a function defined by an equation
\int_{}^{}\!k\,dx
0
\int_{}^{}\!x^{n}\,dx
\frac{\left(x^{n+1}\right)}{n+1}
\int_{}^{}\!\frac{1}{x}\,dx
ln|x|
\int_{}^{}\!e^{x}\,dx
e^x
\int_{}^{}\!\cos x\,dx
sinx
\int_{}^{}\!\sin x\,dx
-cosx
\int_{}^{}\!\sec^2\left(x\right)dx
tan(x)
\int_{}^{}\!\sec x\tan x\,dx
sec(x)
\int_{}^{}\!\csc^2x\,dx
-cotx
\int_{}^{}\!\csc x\cot x\,dx
-cscx
\int_{}^{}\!\frac{1}{x^2+1}\,dx
tan^-1(x)
\int_{}^{}\!\frac{1}{\sqrt{1-x^2}}\,dx
sin^-1(x)
\int_{}^{}\!\frac{1}{x\sqrt{x^2-1}}\,dx
sec^-1(x)
\int_{}^{}\!a^{x}\,dx
a^x / ln a
\int_{}^{}\!\tan x\,dx
ln|sec x|
\int_{}^{}\cot x\,dx
ln|sin x|
\int_{}^{}\!\sec x\,dx
ln|sec x + tan x|
\int_{}^{}\csc x\,dx
ln|csc x - cot x|
Avg value of a function
\frac{1}{b-a}\int_{}^{}f\left(x\right)\,dx
Trapezoidal rule
(interval / 2) initial area + 2 times area + final area
Simpson’s Rule
(interval / 3) initial area + alternate 4 and 2 times area + final area
\frac{d}{dx}\left(f\left(g\left(x\right)\right)\right)
f’(g(x)) * g’(x)