1/19
Anti-Derivatives to memorize for Calc 2
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
∫xn dx =
1/(n+1) ⋅ xn+1 + C
∫1/x dx =
ln |x| +C
∫sinx dx =
-cosx + C
∫cosx dx =
sin x + C
∫sec2x dx =
tan x + C
∫secx tanx dx =
secx + C
∫csc2x dx =
-cot x + C
∫secx cotx dx =
-cscx + C
∫tanx dx =
ln |sec x| + C
∫secx dx =
ln|secx + tanx| + C
∫cotx dx =
ln |sin x| + C
∫cscx dx =
ln |cscx - cotx| + C
∫ex dx =
ex + C
∫bx dx =
(b is a constant > 0)
bx/(lnb) + C
∫1/√(1-x²) =
sin-1(x) + C
∫-1/√(1-x2) dx =
cos-1x + C
∫1/(x2 + a) dx =
(1/√a) tan-1(x/√a) + C
∫sinhx dx =
coshx + C
∫coshx dx =
sinhx + C
∫lnx dx =
x ln x - x + C