1/31
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
General form of a polynomial in one variable
p(x) = a extsubscript{n}x extsuperscript{n} + a extsubscript{n-1}x extsuperscript{n-1} + … + a extsubscript{1}x + a extsubscript{0}, where a extsubscript{n}
\neq 0 and n is a non-negative integer.
Degree of a polynomial
The highest power of the variable in the polynomial.
Degree of a non-zero constant polynomial
0
Degree of the zero polynomial
Not defined
Monomial
A polynomial with one term.
Binomial
A polynomial with two terms.
Trinomial
A polynomial with three terms.
Linear polynomial
A polynomial of degree 1. General form
Quadratic polynomial
A polynomial of degree 2. General form
Cubic polynomial
A polynomial of degree 3. General form
Zero of a polynomial
A real number c such that p(c) = 0.
Zero of a linear polynomial p(x) = ax + b
x = -b/a, where a
\neq 0.
Number of zeroes of a linear polynomial
One and only one zero.
Non-zero constant polynomial has
No zero.
Zeroes of the zero polynomial
Every real number is a zero.
Factor Theorem
(x – a) is a factor of p(x) if and only if p(a) = 0.
Identity I
x
\textsuperscript{2} + 2xy + y
\textsuperscript{2}
Identity II
x
\textsuperscript{2} – 2xy + y
\textsuperscript{2}
Identity III
(x + y)(x – y)
Identity IV
x
\textsuperscript{2} + (a + b)x + ab
Identity V
x
\textsuperscript{2} + y
\textsuperscript{2} + z
\textsuperscript{2} + 2xy + 2yz + 2zx
Identity VI
x
\textsuperscript{3} + y
\textsuperscript{3} + 3xy(x + y) or x
\textsuperscript{3} + 3x
\textsuperscript{2}y + 3xy
\textsuperscript{2} + y
\textsuperscript{3}
Identity VII
x
\textsuperscript{3} – y
\textsuperscript{3} – 3xy(x – y) or x
\textsuperscript{3} – 3x
\textsuperscript{2}y + 3xy
\textsuperscript{2} – y
\textsuperscript{3}
Identity VIII
(x + y + z)(x
\textsuperscript{2} + y
\textsuperscript{2} + z
\textsuperscript{2} – xy – yz – zx)
If x + y + z = 0, then x
\textsuperscript{3} + y
\textsuperscript{3} + z
\textsuperscript{3} = ?
3xyz
Coefficient of a term
The numerical factor of the term (e.g., in –x
\textsuperscript{3} , the coefficient is –1).
Constant polynomial
A polynomial with only a constant term (e.g., 2, –5, 7).
Zero polynomial
The constant polynomial 0.
Value of a polynomial p(x) at x = a
Found by substituting a for x in the polynomial.
How to check if (x + 1) is a factor of p(x)
Find p(–1). If p(–1) = 0, then (x + 1) is a factor.
Method to factorise ax
\textsuperscript{2} + bx + c
Split the middle term bx into two terms whose product is ac.
For cubic polynomials, first step in factorisation
Find a zero a such that p(a) = 0, then (x – a) is a factor.