Derivadas

0.0(0)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/31

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

32 Terms

1
New cards
f(x) = g(x) + h(x)
f'(x) = g'(x) + h'(x)
2
New cards
f(x) = g(x) - h(x)
f'(x) = g'(x) - h'(x)
3
New cards
f(x) = g(x) • h(x)
f'(x) = g'(x) • h(x) + h'(x) • g(x)
4
New cards
f(x) = g(x)/h(x)
f'(x)= (g'(x) · h(x) - h'(x) · g(x))/ (h(x))^2
5
New cards
f(g(x))'
f'(g(x)) · g'(x)
6
New cards
f(x) = x
f'(x) = 1
7
New cards
f(x) = k
f'(x) = 0
8
New cards
f(x) = k · x
f'(x) = k
9
New cards
f(x) = x^n
f'(x) = n · x^n-1
10
New cards
f(x) = (g(x))^n
f'(x) = n · (g(x))^n-1 · g'(x)
11
New cards
f(x) = ln (x)
f'(x) = 1/x
12
New cards
f(x) = ln (g(x))
f'(x) = g'(x)/g(x)
13
New cards
f(x) = log en base "a" de (x)
f'(x) = 1/x · ln(a)
14
New cards
f(x) = log en base "a" de (g(x))
f'(x) = g'(x)/g(x) · ln(a)
15
New cards
f(x) = e^x
f'(x) = e^x
16
New cards
f(x) = e^(g(x))
f'(x) = e^(g(x)) · g'(x)
17
New cards
f(x) = k^x
f'(x) = k^x · ln(k)
18
New cards
f(x) = k^(g(x))
f'(x) = k^(g(x)) · ln(k) · g'(x)
19
New cards
f(x) = sen(x)
f'(x) = cos(x)
20
New cards
f(x) = cos(x)
f'(x) = -sen(x)
21
New cards
f(x) = sen (g(x))
f'(x) = cos(g(x)) · g'(x)
22
New cards
f(x) = cos (g(x))
f'(x) = -sen(g(x)) · g'(x)
23
New cards
f(x) = tan(x)
f'(x) = 1 + tan^2 (x) = 1/cos^2(x) = sec^2(x)
24
New cards
f(x) = tan(g(x))
f'(x) = (1 + tan^2(g(x))) · g'(x) = g'(x)/cos^2 (g(x)) = sec^2(g(x)) · g'(x)
25
New cards
f(x) = arcsen(x)
f'(x) = 1/raíz cuadrada (1 - x^2)
26
New cards
f(x) = arcsen(g(x))
f'(x) = g'(x)/raíz cuadrada (1 - (g(x))^2)
27
New cards
f(x) = arccos(x)
f'(x) = -[1/raíz cuadrada (1 - x^2)]
28
New cards
f(x) = arccos(g(x))
f'(x) = -[g'(x)/ raíz cuadrada (1 - (g(x))^2)]
29
New cards
f(x) = arctan(x)
f'(x) = 1/1 + x^2
30
New cards
f(x) = arctan(g(x))
f'(x) = g'(x)/1 + g(x)^2
31
New cards
f(x) = arccotan(x)
f'(x) = -[1/1 + x^2]
32
New cards
f(x) = arccotan(g(x))
f'(x) = -[g'(x)/1 + (g(x))^2]