Home
Explore
Exams
Search for anything
Login
Get started
Home
A-Level Further and Additional Maths
Derivadas
0.0
(0)
Rate it
Learn
Practice Test
Spaced Repetition
Match
Flashcards
Card Sorting
1/31
Earn XP
Description and Tags
Math
A-Level Further and Additional Maths
Add tags
Study Analytics
All
Learn
Practice Test
Matching
Spaced Repetition
Name
Mastery
Learn
Test
Matching
Spaced
No study sessions yet.
32 Terms
View all (32)
Star these 32
1
New cards
f(x) = g(x) + h(x)
f'(x) = g'(x) + h'(x)
2
New cards
f(x) = g(x) - h(x)
f'(x) = g'(x) - h'(x)
3
New cards
f(x) = g(x) • h(x)
f'(x) = g'(x) • h(x) + h'(x) • g(x)
4
New cards
f(x) = g(x)/h(x)
f'(x)= (g'(x) · h(x) - h'(x) · g(x))/ (h(x))^2
5
New cards
f(g(x))'
f'(g(x)) · g'(x)
6
New cards
f(x) = x
f'(x) = 1
7
New cards
f(x) = k
f'(x) = 0
8
New cards
f(x) = k · x
f'(x) = k
9
New cards
f(x) = x^n
f'(x) = n · x^n-1
10
New cards
f(x) = (g(x))^n
f'(x) = n · (g(x))^n-1 · g'(x)
11
New cards
f(x) = ln (x)
f'(x) = 1/x
12
New cards
f(x) = ln (g(x))
f'(x) = g'(x)/g(x)
13
New cards
f(x) = log en base "a" de (x)
f'(x) = 1/x · ln(a)
14
New cards
f(x) = log en base "a" de (g(x))
f'(x) = g'(x)/g(x) · ln(a)
15
New cards
f(x) = e^x
f'(x) = e^x
16
New cards
f(x) = e^(g(x))
f'(x) = e^(g(x)) · g'(x)
17
New cards
f(x) = k^x
f'(x) = k^x · ln(k)
18
New cards
f(x) = k^(g(x))
f'(x) = k^(g(x)) · ln(k) · g'(x)
19
New cards
f(x) = sen(x)
f'(x) = cos(x)
20
New cards
f(x) = cos(x)
f'(x) = -sen(x)
21
New cards
f(x) = sen (g(x))
f'(x) = cos(g(x)) · g'(x)
22
New cards
f(x) = cos (g(x))
f'(x) = -sen(g(x)) · g'(x)
23
New cards
f(x) = tan(x)
f'(x) = 1 + tan^2 (x) = 1/cos^2(x) = sec^2(x)
24
New cards
f(x) = tan(g(x))
f'(x) = (1 + tan^2(g(x))) · g'(x) = g'(x)/cos^2 (g(x)) = sec^2(g(x)) · g'(x)
25
New cards
f(x) = arcsen(x)
f'(x) = 1/raíz cuadrada (1 - x^2)
26
New cards
f(x) = arcsen(g(x))
f'(x) = g'(x)/raíz cuadrada (1 - (g(x))^2)
27
New cards
f(x) = arccos(x)
f'(x) = -[1/raíz cuadrada (1 - x^2)]
28
New cards
f(x) = arccos(g(x))
f'(x) = -[g'(x)/ raíz cuadrada (1 - (g(x))^2)]
29
New cards
f(x) = arctan(x)
f'(x) = 1/1 + x^2
30
New cards
f(x) = arctan(g(x))
f'(x) = g'(x)/1 + g(x)^2
31
New cards
f(x) = arccotan(x)
f'(x) = -[1/1 + x^2]
32
New cards
f(x) = arccotan(g(x))
f'(x) = -[g'(x)/1 + (g(x))^2]