d/dx [c]
0
d/dx [cu]
cu’
d/dx [un]
nun-1(u’)
d/dx [u±v]
u’ ± v’
d/dx [uv]
uv’ + vu’
d/dx [u/v]
vu’ - uv’ / v2
d/dx eu
eu u’
d/dx ln u
u’/u = 1/u * u’
d/dx [sin u]
(cosu)u’ = u’cosu
d/dx [cos u]
(-sinu)u’ = -u’sinu
d/dx [tan u]
(sec2u)u’ = u’sec2u
d/dx [sec u]
(secutanu)u’ = u’secutanu
d/dx [csc u]
(-cscucotu)u’
d/dx [cot u]
(-csc2u)u’ = -u’csc2u
d/dx au
(lna)auu’ = u’(lna)au
d/dx logau
lnu/lna = u’/(lna)u
d/dx [arc sin u]
u’/√1-u2 ,|u|<1
d/dx [arc cos u]
-u’/√1-u2 ,|u|<1
d/dx [arc tan u]
u’/1+u2
d/dx [arc sec u]
u’/|u|√u2-1 ,|u|>1
d/dx [arc csc u]
-u’/|u|√u2-1 ,|u|>1
d/dx [arc cot u]
-u’/1+u2