1/30
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
f(x)+k
Vertical Shift UP k units (k is outside)
f(x)−k
Vertical Shift DOWN k units (k is outside)
f(x−h)
Horizontal Shift RIGHT h units (−h is inside - OPPOSITE sign!)
f(x+h)
Horizontal Shift LEFT h units (+h is inside - OPPOSITE sign!)
−f(x)
Reflection over the x-axis (Flips UP/DOWN)
f(−x)
Reflection over the y-axis (Flips LEFT/RIGHT)
a⋅f(x), where a>1
Vertical Stretch by factor of a (Graph gets skinnier)
a⋅f(x), where 0
Vertical Compression by factor of a (Graph gets wider)
g(x)=f(x)+7
Vertical Shift Up 7
g(x)=f(x)−12
Vertical Shift Down 12
g(x)=f(x−1)
Horizontal Shift Right 1 (Opposite Sign!)
g(x)=f(x+9)
Horizontal Shift Left 9 (Opposite Sign!)
g(x)=f(x−3)+5
Shift Right 3, Shift Up 5
g(x)=f(x+1)−10
Shift Left 1, Shift Down 10
g(x)=−f(x)
Reflection over the x-axis
g(x)=f(−x)
Reflection over the y-axis
g(x)=−f(x)+2
Reflection over x-axis, Shift Up 2
g(x)=f(−x)−6
Reflection over y-axis, Shift Down 6
g(x)=−f(x−4)
Reflection over x-axis, Shift Right 4
g(x)=f(−x+1)
Reflection over y-axis, Shift Left 1
g(x)=4f(x)
Vertical Stretch by a factor of 4
g(x)=5/1 f(x)
Vertical Compression by a factor of 5/1
g(x)=2f(x)−1
Vertical Stretch by 2, Shift Down 1
g(x)=4/3 f(x)+5
Vertical Compression by 4/3, Shift Up 5
g(x)=−3f(x−1)+8
Reflection over x-axis, Vertical Stretch by 3, Shift Right 1, Shift Up 8
g(x)=−2/1 f(x+2)−4
Reflection over x-axis, Vertical Compression by 2/1, Shift Left 2, Shift Down 4
g(x)=f(x)+5
(2,10+5)=(2,15)
g(x)=f(x−3)
(2+3,10)=(5,10)
g(x)=−f(x)+1
(2,−10+1)=(2,−9)
g(x)=2f(x+6)−1
(2−6,2⋅10−1)=(−4,19)
g(x)=−2/1 f(x−1)+3
(2+1,−2/1 ⋅10+3)=(3,−2)