1/24
Fundamentals of Astronomy Ch. 2
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Spherical Polar to Cartesian (x)
x = r*cos(ψ)*sin(θ)
Spherical Polar to Cartesian (y)
y = r*sin(ψ)*sin(θ)
Spherical Polar to Cartesian (z)
z = r*cos(θ)
Horizontal to HA-Dec #1
cos(H)*cos(δ) = cos(Az)*cos(h)*sin(φ) + sin(h)*cos(φ)
Horizontal to HA-Dec #2
sin(H)*cos(δ) = sin(Az)*cos(h)
Horizontal to HA-Dec #3
sin(δ) = -cos(Az)*cos(h)*cos(φ) + sin(h)*sin(φ)
HA-Dec to Horizontal #1
cos(Az)*cos(h) = cos(H)*cos(δ)*sin(φ) - sin(δ)*cos(φ)
HA-Dec to Horizontal #2
sin(Az)*cos(h) = sin(H)*cos(δ)
HA-Dec to Horizontal #3
sin(h) = cos(H)*cos(δ)*cos(φ) + sin(δ)*sin(φ)
Altitude of Upper Culmination (South of Zenith)
hᵤ = 90° - φ + δ
Altitude of Upper Culmination (North of Zenith)
hᵤ = 90° + φ - δ
Upper Culmination
hᵤ = 90° - φ + δ, measured from the Southern Horizon
Lower Culmination
hl = δ + φ - 90°, measured from the Northern Horizon
Culminations to Declination
δ = (hᵤ + hl)/2
Culminations to Latitude
φ = 90° - (hᵤ - hl)/2
Hour Angle at Rising and Setting
cos (H) = -tan(φ)*tan(δ)
Circumpolar in the North Pole
δ > 90° - φ
Circumpolar in the South Pole
δ < (90° + φ)
Never Visible in the North Pole
δ < φ - 90°
Never Visible in the South Pole
δ > 90° + φ
Rises and Sets in the North Pole
φ - 90° ≤ δ ≤ 90°- φ
Rises and Sets in the South Pole
-(90° + φ) ≤ δ ≤ 90° + φ
Length of Day
= 24ʰ*[1 - (1/180°)*arccos(tan(δ⊙)*tan(φ))] if rises and sets
t = 24ʰ if circumpolar
t = 0ʰ if never rises
Declination of the Sun
δ⊙ = arcsin(sin(ε)*sin((2π/Tt)*t))
Right Ascension of the Sun
α⊙ = arctan(cos(ε)*tan((2π/Tt)*t))