1/16
Vocabulary flashcards covering the basic integration rules and common antiderivatives from the lecture notes.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Power Rule for Integrals
If n ≠ -1, ∫ u^n du = u^(n+1)/(n+1) + C.
Integral of e^u
∫ e^u du = e^u + C.
Integral of sin u
∫ sin u du = -cos u + C.
Integral of cos u
∫ cos u du = sin u + C.
Integral of sec^2 u
∫ sec^2 u du = tan u + C.
Integral of sec u tan u
∫ sec u tan u du = sec u + C.
Integral of tan u
∫ tan u du = -ln|cos u| + C (equivalently ln|sec u| + C).
Integral of sec u
∫ sec u du = ln|sec u + tan u| + C.
Integral of 1/u
∫ (1/u) du = ln|u| + C.
Integral of csc u cot u
∫ csc u cot u du = -csc u + C.
Integral of csc^2 u
∫ csc^2 u du = -cot u + C.
Integral of cot u
∫ cot u du = ln|sin u| + C.
Integral of csc u
∫ csc u du = ln| csc u - cot u | + C.
Integral of du / sqrt(a^2 - u^2)
∫ du / sqrt(a^2 - u^2) = arcsin(u/a) + C.
Integral of du / (a^2 + u^2)
∫ du / (a^2 + u^2) = (1/a) arctan(u/a) + C.
Integral of sinh x
∫ sinh x dx = cosh x + C.
Integral of cosh x
∫ cosh x dx = sinh x + C.