1/85
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Vector-valued function
A function r(t)=⟨x(t), y(t), z(t)⟩ that assigns a vector in ℝ² or ℝ³ to each real t
Velocity vector v(t)
r′(t)=⟨x′(t), y′(t), z′(t)⟩
Speed
‖v(t)‖=√[x′(t)²+y′(t)²+z′(t)²]
Acceleration vector a(t)
v′(t)=r″(t)
Arc length formula
L=∫ₐᵇ‖r′(t)‖ dt
Unit tangent vector T(t)
r′(t)/‖r′(t)‖
Unit normal vector N(t)
T′(t)/‖T′(t)‖
Curvature κ
‖r′(t)×r″(t)‖/‖r′(t)‖³
ds/dt vs. ds relationship
d/ds = (1/‖r′(t)‖) d/dt
Tangential accel. a_T
d/dt‖r′(t)‖
Normal accel. a_N
κ‖r′(t)‖²
Vector projection proj_v u
(u·v)/(v·v)·v
Work along a curve
W=∫_C F·dr = ∫ₐᵇ F(r(t))·r′(t) dt
Conservative vector field
F is conservative ⇔ ∇×F=0 on a simply connected domain
Fundamental Theorem of Line Integrals
∫_C F·dr = φ(r(b))−φ(r(a)) if F=∇φ
General 2nd-degree in x,y
Ax²+Bxy+Cy²+Dx+Ey+F=0
Circle criteria
B=0, A=C ⇒ (x−h)²+(y−k)²=r²
Ellipse standard form
(x−h)²/a²+(y−k)²/b²=1, a>b
Hyperbola standard form
(x−h)²/a²−(y−k)²/b²=1
Parabola standard form
(y−k)²=4p(x−h)
Eccentricity values
circle e=0; ellipse 0
Focus-directrix definition
dist(P,F)/dist(P,directrix)=e
Rotate axes to remove xy
K: cot(2θ)=(A−C)/B
Center a conic
Complete the square in x,y and shift
Degenerate conics
B²−4AC=0 ⇒ parabola or pair of lines/point
Rectangular→Polar
r=√(x²+y²), θ=atan2(y,x)
Polar→Rectangular
x=r cosθ, y=r sinθ
Area in polar
A=∫ₐᵇ∫₀^R(θ) r dr dθ
Polar arc length
L=∫ₐᵇ√[r(θ)²+r′(θ)²] dθ
Smooth parametric curve
x′(t),y′(t) continuous and never zero
Parametric surface area
A=∬D‖ru×r_v‖ du dv
Partial derivative fx(a,b)
lim_{h→0}[f(a+h,b)−f(a,b)]/h
Gradient ∇f
⟨fx, fy⟩
Directional derivative
D_u f(a,b)=∇f·u
Tangent plane
z−f(a,b)=fx(a,b)(x−a)+fy(a,b)(y−b)
Differentiability criterion
Error of linear approximation is o(√(h²+k²))
Chain rule (2-vars)
dz/dt = fx dx/dt + fy dy/dt
Ellipsoid
x²/a² + y²/b² + z²/c² = 1
Cylinder along z
x²/a² + y²/b² = 1
Elliptic paraboloid
z = x²/a² + y²/b²
Hyperbolic paraboloid
z = x²/a² − y²/b²
One-sheet hyperboloid
x²/a² + y²/b² − z²/c² = 1
Two-sheet hyperboloid
−x²/a² − y²/b² + z²/c² = 1
Identify quadric
Match signs of squared terms to standard forms
Double integral volume
V=∬_D f(x,y) dA
Polar element in 2D
dA = r dr dθ
Triple integral (cyl)
dV = r dr dθ dz
Spherical coords
x=ρ sinφ cosθ; y=ρ sinφ sinθ; z=ρ cosφ
Spherical volume
element dV=ρ² sinφ dρ dφ dθ
Choose coords by symmetry
Circle→polar; cylinder→cylindrical; sphere→spherical
Green’s Theorem
∮C P dx+Q dy = ∬D(∂Q/∂x−∂P/∂y)dA
Divergence Theorem
∬S F·n dS = ∭E (∇·F) dV
Stokes’ Theorem
∮C F·dr = ∬S (∇×F)·n dS
Orientation rule
Use right-hand rule for boundary vs normal
Green’s area trick
If P=−y/2, Q=x/2 ⇒ ∮x dy−y dx=2∬dA
Dot product
u·v = u₁v₁+u₂v₂+u₃v₃
Perp test
u·v=0 ⇒ u⊥v
Cross product
u×v = det[[i,j,k],[u₁,u₂,u₃],[v₁,v₂,v₃]]
Area via cross
‖u×v‖ = area of parallelogram
Line eqn
r(t)=P₀ + t d
Symmetric line
(x−x₀)/d₁=(y−y₀)/d₂=(z−z₀)/d₃
Plane eqn
A(x−x₀)+B(y−y₀)+C(z−z₀)=0
Point-plane distance
|Ax₁+By₁+Cz₁+D|/√(A²+B²+C²)
Multivar limit def
∀ε>0 ∃δ>0 s.t.‖(x,y)−(a,b)‖<δ⇒|f(x,y)−L|<ε
Path test for DNE
Different paths (e.g., y=mx, x=0) give different limits
Continuity at (a,b)
lim_(x,y)->(a,b)f(x,y)=f(a,b)
Polar path test
Convert to (r,θ); if limit depends on θ, no limit
Linearization L(x,y)
f(a,b)+fx(a,b)(x−a)+fy(a,b)(y−b)
Approximate with L
f(a+Δx,b+Δy)≈L(a+Δx,b+Δy)
Total differential dz
dz = fx dx + fy dy
First step problem-solving
Read carefully: givens, asks, constraints
Choosing integral method
Rational→partial fractions; trig→identities; composite→u-sub
Choosing coords
By symmetry: circle→polar; cylinder→cylindrical; sphere→spherical
Using Green/Stokes/Divergence
✔ differentiability; ✔ orientation; compute interior integral
Vector surface integral steps
Parametrize r(u,v); compute ru×rv; integrate F·(ru×rv)
Line integral steps
Parametrize (x(t),y(t)), get dx,dy, substitute, integrate
Domain check
Identify endpoints and points where integrand undefined
Antiderivative check
Differentiate candidate to recover integrand
Orientation confirm
Use right-hand rule for curve/surface
Multivar limit test
Approach along multiple paths
Partial derivative check
Hold one var constant; compare mixed partials fxy & fyx
Gradient normal check
Dot gradient/normal with tangent = 0
Bounds check
Sketch region; project to find correct limits
Parametrization check
Check derivative ≠0 and covering exactly once
Conservative 2D test
∂P/∂y = ∂Q/∂x on simply connected domain