1/42
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Limit Definition
The value a function approaches as the input approaches a number.
Continuity
A function is continuous at x=a if \lim[{x \to a} f(x) = f(a)
Definition of Derivative
f'(x) = \lim[{h \to 0} \frac{f(x+h) - f(x)}{h}
Power Rule
\frac{d}{dx}(x^n) = nx^{n-1}
Product Rule
(fg)' = f'g + fg'
Quotient Rule
\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}
Chain Rule
(f(g(x)))' = f'(g(x)) \cdot g'(x)
ddx[sinx]=cosx\frac{d}{dx}[\sin x] = \cos x
string
ddx[cosx]=−sinx\frac{d}{dx}[\cos x] = -\sin x
string
ddx[tanx]=sec2x\frac{d}{dx}[\tan x] = \sec^2 x
string
ddx[lnx]=1x\frac{d}{dx}[\ln x] = \frac{1}{x}
string
ddx[ex]=ex\frac{d}{dx}[e^x] = e^x
string
Critical Point
Where f'(x) = 0 or f'(x) is undefined.
First Derivative Test
Determines local extrema using sign changes in f'.
Second Derivative Test
If f''(c) > 0, local min; if f''(c) < 0, local max.
Inflection Point
Where f''(x) = 0 and concavity changes.
Definition of Definite Integral
\int_a^b f(x)dx = \lim[{n \to \infty} \sum f(x_i^") \Delta x
Power Rule for Integrals
\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)
Substitution Rule
Use u = g(x), then change all parts to u.
Integration by Parts
\int u \, dv = uv - \int v \, du
FTC Part 2
\int_a^b f(x)dx = F(b) - F(a)
Area Between Curves
\int_a^b [\text{top} - \text{bottom}] \, dx
Disk Method
\pi \int_a^b [R(x)]^2 dx
Washer Method
\pi \int_a^b [R(x)^2 - r(x)^2] dx
Shell Method
2\pi \int_a^b (radius)(height) dx
Convergent Series
Has a finite sum.
Divergent Series
Does not have a finite sum.
Nth-Term Test
If \lim a_n \neq 0, series diverges.
Geometric Series
\sum ar^n \text{ converges if } |r| < 1
P-Series
\sum \frac{1}{n^p} \text{ converges if } p > 1
Alternating Series Test
Converges if terms decrease and \lim a_n = 0.
Ratio Test
\lim \left|\frac{a{n+1}}{an}\right| < 1 \Rightarrow \text{converges}
Root Test
\lim \sqrt[n]{|a_n|} < 1 \Rightarrow \text{converges}
Maclaurin Series for e^x
\sum \frac{x^n}{n!}
Maclaurin Series for \sin x
\sum \frac{(-1)^n x^{2n+1}}{(2n+1)!}
Maclaurin Series for \cos x
\sum \frac{(-1)^n x^{2n}}{(2n)!}
Taylor Series Centered at a
\sum \frac{f^{(n)}(a)}{n!}(x - a)^n
Radius of Convergence
Use Ratio or Root Test.
IVT
If continuous on [a,b], hits every value between f(a) and f(b)
EVT
If continuous on [a,b], has absolute max and min.
MVT
f'(c) = \frac{f(b) - f(a)}{b - a}
Rolle’s Theorem
If f(a) = f(b), then f'(c) = 0 somewhere.
FTC Part 1
\frac{d}{dx} \int_a^x f(t) dt = f(x)