1/36
These flashcards cover key derivatives, integrals, and concepts from Calculus 2, providing definitions and rules related to trigonometric functions, logarithmic integration, and volume calculation methods.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx [sin(x)]
cos(x)
d/dx [cos(x)]
-sin(x)
d/dx [tan(x)]
sec^2(x)
d/dx [cot(x)]
-csc^2(x)
d/dx [sec(x)]
sec(x)*tan(x)
d/dx [csc(x)]
-csc(x)*cot(x)
Integral 1/x dx
ln|x| + C
Integral f'(x)/f(x) dx
ln|f(x)| + C
Integral ln(x) dx
x*ln(x) - x + C
Integral a^x dx
a^x / ln(a) + C (where a > 0 and a != 1)
Integral e^x dx
e^x + C
Integral 1/x^2 dx
-1/x + C
Integral sec(x) dx
ln|sec(x) + tan(x)| + C
Integral csc(x) dx
-ln|csc(x) + cot(x)| + C
Integral sec^2(x) dx
tan(x) + C
Integral csc^2(x) dx
-cot(x) + C
Integral sec(x)*tan(x) dx
sec(x) + C
Integral csc(x)*cot(x) dx
-csc(x) + C
Integral 1/sqrt(1 - x^2) dx
arcsin(x) + C
Integral 1/(x^2 + a^2) dx
(1/a) * arctan(x/a) + C
Integral 1/(x*sqrt(x^2 - a^2)) dx
(1/a) * arcsec(|x|/a) + C
d/dx [arcsin(u)]
u' / sqrt(1 - u^2)
d/dx [arccos(u)]
-u' / sqrt(1 - u^2)
d/dx [arctan(u)]
u' / (1 + u^2)
d/dx [arccot(u)]
-u' / (1 + u^2)
d/dx [arcsec(u)]
u' / (|u| * sqrt(u^2 - 1))
d/dx [arccsc(u)]
-u' / (|u| * sqrt(u^2 - 1))
Washer Method for Volume
V = pi * Integral from a to b of [(R(x))^2 - (r(x))^2] dx
Disk Method
Washer Method with r(x) = 0
Washer/Disk Radius Rule (x-axis, region below)
radius = axis - function
Washer/Disk Radius Rule (x-axis, region above)
radius = function - axis
Shell Method Volume
V = 2*pi * Integral from a to b of r(x)*h(x) dx (vertical axis)
Shell Radius Rule (Vertical, region left)
radius = axis - x
Arc Length Formula
L = Integral from a to b of sqrt(1 + (f'(x))^2) dx
Work (Variable Force)
W = Integral from a to b of F(x) dx
Hooke's Law
F = k * x
Newton's Law of Gravitation
F(x) = C / x^2