Unit 3 -- Trigiometry / unit circle basics

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/15

flashcard set

Earn XP

Description and Tags

Pre-calc

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

16 Terms

1
New cards

Write these special angles of quadrant I in radians:

  • 30°

  • 45°

  • 60°

  • 90°

  • 0° = 0

  • 30° = π/6

  • 45° = π/4

  • 60° = π/3

  • 90° = π/2

2
New cards

Write these special angles of quadrant II in radians:

  • 120°

  • 135°

  • 150°

  • 180°

  • 120° = 2π/3

  • 135° = 3π/4

  • 150° = 5π/6

  • 180° = π

3
New cards

Write these special angles of quadrant III in radians:

  • 210°

  • 225°

  • 240°

  • 270°

  • 210° = 7π/6

  • 225° = 5π/4

  • 240° = 4π/3

  • 270° = 3π/2

4
New cards

Write these special angles of quadrant IV in radians:

  • 300°

  • 315°

  • 330°

  • 360°

  • 300° = 5π/3

  • 315° = 7π/4

  • 330° = 11π/6

  • 360° = 2π

5
New cards

Make the table for the unit circle trig values + the ASTC graph view

It should look like:

  • Q1 – All: sin, cos, tan all positive

  • Q2 – Students: sin is positive (cos, tan neg)

  • Q3 – Take: tan is positive (sin, cos neg)

  • Q4 – Calculus: cos is positive (sin, tan neg)

<ul><li><p><strong>Q1 – All:</strong> sin, cos, tan <strong>all positive</strong></p></li><li><p><strong>Q2 – Students:</strong> <strong>sin</strong> is positive (cos, tan neg)</p></li><li><p><strong>Q3 – Take:</strong> <strong>tan</strong> is positive (sin, cos neg)</p></li><li><p><strong>Q4 – Calculus:</strong> <strong>cos</strong> is positive (sin, tan neg)</p></li></ul><p></p>
6
New cards

What are reference angles and write the following formula for reference angles in Quadrants I, II, III, and IV:

Reference angle in Quadrant II:
π – θ

Reference angle in Quadrant III:
θ – π

Reference angle in Quadrant IV:

2π – θ

7
New cards

What are coterminal angles and how do you find them?

  • Add or subtract 2π (or 360°) until it's between 0 and 2π.

8
New cards

sin(–θ) = ?

–sin(θ)

9
New cards

cos(–θ) = ?

cos(θ)

10
New cards

tan(–θ) = ?

–tan(θ)

11
New cards

Write the ratios for 30-60-90 and 45-45-90 triangles:

30-60-90

  • Opposite 30° = 1

  • Opposite 60° = √3

  • Hypotenuse = 2

45-45-90

  • Legs = 1

  • Hypotenuse = √2

<p><strong>30-60-90</strong> </p><ul><li><p>Opposite 30° = 1</p></li><li><p>Opposite 60° = √3</p></li><li><p>Hypotenuse = 2</p></li></ul><p></p><p><strong>45-45-90</strong></p><ul><li><p>Legs = 1</p></li><li><p>Hypotenuse = √2</p></li></ul><p></p>
12
New cards

r = ?

  • unit circle r=1

  • any other circle: r= √x2+y2

13
New cards

sinθ=?

y / r

14
New cards

cosθ = ?

x / r

15
New cards

tanθ = ?

y / x

16
New cards

What does “standard position” mean?

Initial side at positive x-axis; rotate counterclockwise.