Gut Secretions

0.0(0)
studied byStudied by 2 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/30

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

31 Terms

1
New cards

How much water flows into and out of the gut in 24 hours?

The gut handles a total of 9 liters of water daily (intake + secretions).

Intake: Approximately 2 liters of water consumed daily.

Secretions into the Gut:

  • Saliva: 1.5 liters

  • Gastric secretions: 2 liters

  • Bile: 0.5 liters (500 ml)

  • Pancreatic secretions: 1.5 liters

  • Intestinal secretions: 1.5 liters

Water Absorption:

  • Small Intestine: Absorbs 8.5 liters of water.

  • Colon: Absorbs 350 ml (0.35 liters).

  • Total Water Absorbed: 8.5 + 0.35 = 8.85 liters

Water Excreted:

  • Feces: Approximately 150 ml (0.15 liters) of water is excreted.

<p>The gut handles a total of 9 liters of water daily (intake + secretions).</p><p>Intake: Approximately 2 liters of water consumed daily.</p><p><strong><u>Secretions into the Gut:</u></strong></p><ul><li><p>Saliva: 1.5 liters</p></li><li><p>Gastric secretions: 2 liters</p></li><li><p>Bile: 0.5 liters (500 ml)</p></li><li><p>Pancreatic secretions: 1.5 liters</p></li><li><p>Intestinal secretions: 1.5 liters</p></li></ul><p><strong><u>Water Absorption:</u></strong></p><ul><li><p><strong>Small Intestine:</strong> Absorbs 8.5 liters of water.</p></li><li><p><strong>Colon:</strong> Absorbs 350 ml (0.35 liters).</p></li><li><p><strong>Total Water Absorbed:</strong> 8.5 + 0.35 = 8.85 liters</p></li></ul><p><strong><u>Water Excreted:</u></strong></p><ul><li><p><strong>Feces:</strong> Approximately 150 ml (0.15 liters) of water is excreted.</p></li></ul><p></p>
2
New cards

How is Saliva Secreted - MOA?

Saliva is produced by acinar cells at the base of salivary ducts, with the lumen inside and the basolateral side facing the bloodstream.

Primary Secretion by Acinar Cells:

  1. Na+/K+ ATPase Pump: Located on the basolateral membrane of acinar cells, it drives the process by pumping Na+ out and K+ into the cell, creating a Na+ gradient.

  2. Ion Movement: Na+ flows into the acinar cells via channels, followed by Cl- and HCO3- through co-transporters (e.g., Na+/K+/2Cl- co-transporter). K+ exits the cell, maintaining the gradient.

  3. Water Movement: The movement of Na+ and Cl- into the acinar lumen (between cells) creates an osmotic gradient, pulling water into the lumen via osmosis.

  4. Result: The primary secretion is a watery, isotonic fluid (same solute concentration as plasma).

Modification in Salivary Duct:

  • As the primary secretion passes through the salivary duct, it is modified:

    • Na+ and Cl- Reabsorption: Some Na+ and Cl- are reabsorbed into the bloodstream.

    • K+ and HCO3- Addition: K+ and HCO3- are secreted into the saliva.

  • Purpose: Adjustments depend on the oral cavity's needs (e.g., pH buffering via HCO3-).

Final Outcome:

  • The final saliva is hypotonic (lower solute concentration than plasma) and HCO3--rich, aiding in buffering and digestion.

  • Flow Rate Impact: At higher flow rates, modification (especially Na+ and Cl- reabsorption) becomes less effective, reducing HCO3- concentration in the saliva.

<p>Saliva is produced by <strong><mark data-color="red" style="background-color: red; color: inherit">acinar cells</mark></strong> at the <strong><mark data-color="red" style="background-color: red; color: inherit">base of salivary ducts</mark></strong>, with the lumen inside and the basolateral side facing the bloodstream.</p><p></p><p><strong><u>Primary Secretion by Acinar Cells:</u></strong></p><ol><li><p><strong>Na+/K+ ATPase Pump:</strong> Located on the basolateral membrane of acinar cells, it drives the process by pumping Na+ out and K+ into the cell, <mark data-color="red" style="background-color: red; color: inherit">creating a Na+ gradient.</mark></p></li><li><p><strong>Ion Movement:</strong> <mark data-color="red" style="background-color: red; color: inherit">Na+ flows into the acinar cells via channels, followed by Cl- and HCO3- through co-transporters (e.g., Na+/K+/2Cl- co-transporter). K+ exits the cell, maintaining the gradient.</mark></p></li><li><p><strong>Water Movement:</strong> The movement of Na+ and Cl- into the acinar lumen (between cells) creates an <strong><mark data-color="red" style="background-color: red; color: inherit">osmotic gradient, pulling water into the lumen via osmosis.</mark></strong></p></li><li><p><strong>Result:</strong> The primary secretion is a watery, isotonic fluid (same solute concentration as plasma).</p></li></ol><p></p><p><strong><u>Modification in Salivary Duct:</u></strong></p><ul><li><p>As the primary secretion passes through the salivary duct, it is modified:</p><ul><li><p><strong>Na+ and Cl- Reabsorption:</strong> Some Na+ and Cl- are reabsorbed into the bloodstream.</p></li><li><p><strong>K+ and HCO3- Addition:</strong> K+ and HCO3- are secreted into the saliva.</p></li></ul></li><li><p><strong>Purpose:</strong> Adjustments depend on the oral cavity's needs (e.g., pH buffering via HCO3-).</p></li></ul><p></p><p><strong><u>Final Outcome:</u></strong></p><ul><li><p>The final saliva is <strong>hypotonic</strong> (lower solute concentration than plasma) and <strong>HCO3--rich</strong>, aiding in <strong><mark data-color="red" style="background-color: red; color: inherit">buffering and digestion.</mark></strong></p></li><li><p><strong>Flow Rate Impact:</strong> At higher flow rates, modification (especially Na+ and Cl- reabsorption) becomes less effective, reducing HCO3- concentration in the saliva.</p></li></ul><p></p>
3
New cards

Diagram of Primary Secretion modification of Saliva

Modification Process:

  • As the primary secretion travels through the salivary duct, it is modified based on the mouth's needs (e.g., to neutralize pH or adjust ion balance):

    • Na+ and Cl- Reabsorption: Some sodium and chloride are reabsorbed to adjust adjust ion concentration balance.

    • K+ and HCO3- Addition: Potassium and bicarbonate are added to the secretion to neutralise pH

  • These changes help tailor saliva for functions like buffering (via HCO3-) or maintaining oral environment.

Final Outcome:

  • The final saliva is hypotonic (Lower solute concentration than plasma) and bicarbonate-rich, aiding in neutralizing acids in the mouth.

Flow Rate Impact:

  • Higher Flow Rates: At FASTER flow rates (e.g., before vomiting, when salivary glands are highly active), there’s LESS time for modification. Less Na+ and Cl- are reabsorbed, leading to a saltier taste (practical example: saliva tasting salty before being sick).

  • Lower Flow Rates: MORE time for modification results in greater Na+ and Cl- reabsorption and a higher HCO3- concentration.

<p><strong><mark data-color="red" style="background-color: red; color: inherit"><u>Modification Process:</u></mark></strong></p><ul><li><p>As the primary secretion travels through the salivary duct, it is modified based on the <mark data-color="red" style="background-color: red; color: inherit">mouth's needs (e.g., to neutralize pH or adjust ion balance):</mark></p><ul><li><p><strong>Na+ and Cl- Reabsorption:</strong> Some sodium and chloride are reabsorbed to adjust <mark data-color="red" style="background-color: red; color: inherit">adjust ion concentration balance.</mark></p></li><li><p><strong>K+ and HCO3- Addition:</strong> Potassium and bicarbonate are added to the <mark data-color="red" style="background-color: red; color: inherit">secretion to neutralise pH</mark></p></li></ul></li><li><p><strong>T</strong>hese changes <strong><mark data-color="purple" style="background-color: purple; color: inherit">help tailor saliva for functions like buffering (via HCO3-) or maintaining oral environment.</mark></strong></p></li></ul><p><strong>Final Outcome:</strong></p><ul><li><p>The final saliva is <strong><mark data-color="yellow" style="background-color: yellow; color: inherit">hypotonic</mark></strong> (Lower solute concentration than plasma) and <strong><mark data-color="yellow" style="background-color: yellow; color: inherit">bicarbonate-rich</mark></strong><mark data-color="yellow" style="background-color: yellow; color: inherit">, aiding in neutralizing acids in the mouth.</mark></p></li></ul><p><strong>Flow Rate Impact:</strong></p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Higher Flow Rates:</mark></strong> At <strong><mark data-color="red" style="background-color: red; color: inherit">FASTER </mark></strong>flow rates <strong>(e.g., <mark data-color="red" style="background-color: red; color: inherit">before vomiting</mark>, when salivary glands are highly active)</strong>, there’s <strong><mark data-color="red" style="background-color: red; color: inherit">LESS </mark></strong><mark data-color="red" style="background-color: red; color: inherit">time for modification</mark>. <mark data-color="blue" style="background-color: blue; color: inherit">Less Na+ and Cl- are reabsorbed, leading to a saltier taste (practical example: saliva tasting salty before being sick).</mark></p></li><li><p><strong><mark data-color="green" style="background-color: green; color: inherit">Lower Flow Rates:</mark></strong> <strong><mark data-color="green" style="background-color: green; color: inherit">MORE</mark> </strong>time for modification results in <mark data-color="green" style="background-color: green; color: inherit">greater Na+ and Cl- reabsorption and a higher HCO3- concentration.</mark></p></li></ul><p></p>
4
New cards

What are the other components of Saliva and what is its function?

Saliva serves as a multifunctional fluid, providing lubrication, initiating digestion, offering antimicrobial protection, and safeguarding teeth.

  • Ions:

    Includes Ca²⁺ (calcium) and phosphate, contributing to saliva's protective role.

  • Large Molecule Components:

    • Mucins (Glycoproteins): Released by acinar cells via exocytosis, making saliva slightly sticky and viscous, forming mucus to aid lubrication.

    • Lysozyme: An enzyme with antimicrobial properties, released by acinar cells via exocytosis.

    • Amylase: Initiates starch digestion, released by acinar cells via exocytosis.

    • Immunoglobulin A (IgA): Produced by nearby plasma cells (B lymphocytes), binds to receptors on the basolateral side of acinar cells, and is transported into the lumen for immune defense.

5
New cards

What are the functions of Saliva?

  • Lubrication: Mucins lubricate food, aiding chewing and swallowing, preventing discomfort as the bolus moves down the oesophagus.

  • Digestion: Amylase begins starch breakdown into sugars (e.g., glucose) for further digestion.

  • Antimicrobial Activity: Lysozyme and IgA protect against pathogens, critical due to the mouth’s exposure to the environment.

  • Tooth Protection: The pH and specific mix of Ca²⁺ and phosphate ions help prevent tooth demineralization, supporting dental health.

6
New cards

What are the different types of Salivary Glands?

  • Parotid Glands: Primarily produce amylase (for starch digestion) with less mucus.

  • Submandibular Glands: Produce a mix of amylase and mucus, with mucus being more prominent than amylase.

  • Sublingual and Minor Mucous Glands: Mainly produce mucus, with minimal amylase.

-Parotid: amylase > mucus

-Submandibular: amylase < mucus

-Sublingual & minor mucous: mucus

Differences between glands: in exact composition: Parotid: amylase > mucus; Submandibular: amylase < mucus; Sublingual & minor mucous: mucus in highest flow rates: basal condition: submandibular; stimulated: parotid

7
New cards

Under Basal conditions what salivary gland has the highest flow rate?

Submandibular

Basal conditions describe the baseline secretion rate of saliva when there is no significant stimulation (e.g., from chewing or tasting food). This represents the minimal, continuous flow of saliva to maintain oral health and lubrication under normal circumstances.

<p>Submandibular</p><p>—</p><p>Basal conditions describe the baseline secretion rate of saliva when there is no significant stimulation (e.g., from chewing or tasting food). This represents the minimal, continuous flow of saliva to maintain oral health and lubrication under normal circumstances.</p>
8
New cards

Under stimulated conditions what salivary gland has the highest flow rate?

Parotid

Under the influence of external stimuli (chewing or tasting food)

<p>Parotid</p><p>—</p><p>Under the influence of external stimuli (chewing or tasting food)</p>
9
New cards

How are salivary glands controlled

Autonomic Nervous System (ANS):

  • Parasympathetic Stimulation: Increases the formation of fluid and electrolyte components of saliva, resulting in a more watery secretion to maintain oral hydration and support digestion.

  • Sympathetic Stimulation: Enhances the release of macromolecular components, such as amylase (for starch digestion) and mucus (for lubrication and protection), making saliva more viscous.

10
New cards

What is secreted in the oesophagus and why is this secreted?

The oesophagus secretes MUCUS using widespread minor glands that secrete only mucus.

Control of Secretion:

  • Secretion is neurally controlled, primarily by the autonomic nervous system.

Purpose of Secretion:

  • Lubrication: Mucus lubricates the oesophageal tube, facilitating the rapid passage of food to the stomach.

  • Protection: Mucus protects the lower oesophagus from acidic damage due to reflux, especially if the sphincter (e.g., lower oesophageal sphincter) is faulty.

11
New cards

What are the 3 phases of Digestion

1) Cephalic Phase (All Neural Control):

Triggers: Thinking about food or presence of food in the mouth (e.g., Pavlov’s dogs experiment).

Mechanisms:

  • Promotes salivary and gastric secretions via neural (extrinsic) control.

  • Amylase in saliva initiates starch digestion.

  • Chewing breaks food into smaller particles.

2) Gastric Phase (Neural - Brain, Enteric Nervous System, Hormones):

Triggers: Presence of food in the stomach.

Mechanisms:

  • Stomach secretes hydrochloric acid and pepsinogen in response to food.

  • Gastric motility and secretions are controlled by the brain, enteric nervous system (ENS), and hormones, facilitating mechanical breakdown and protein digestion.

3) Intestinal Phase (Neural - Brain, Enteric Nervous System, Hormones):

Triggers: Food entering the small intestine.

Mechanisms:

  • Controlled by neural (brain and ENS) and hormonal signals.

  • Hormones inhibit gastric secretion and motility [enterogastrone] while promoting biliary and pancreatic secretions into the duodenum [CCK / Gastrin].

  • Most digestion and nutrient absorption occur during this phase.

<p><strong><u>1) </u><mark data-color="purple" style="background-color: purple; color: inherit"><u>Cephalic Phase</u></mark><u> (All Neural Control):</u></strong></p><p>Triggers: Thinking about food or presence of food in the mouth (e.g., Pavlov’s dogs experiment).</p><p><strong>Mechanisms:</strong></p><ul><li><p>Promotes <mark data-color="red" style="background-color: red; color: inherit">salivary and gastric secretions via neural (extrinsic) control.</mark></p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">Amylase in saliva initiates starch digestion.</mark></p></li><li><p><strong><mark data-color="blue" style="background-color: blue; color: inherit">Chewing breaks food into smaller particles.</mark></strong></p></li></ul><p></p><p><strong><u>2) </u><mark data-color="purple" style="background-color: purple; color: inherit"><u>Gastric Phase (Neural - Brain, Enteric Nervous System, Hormones)</u></mark><u>:</u></strong></p><p>Triggers: Presence of food in the stomach.</p><p><strong>Mechanisms:</strong></p><ul><li><p>Stomach secretes<strong><mark data-color="red" style="background-color: red; color: inherit"> hydrochloric acid and pepsinogen</mark></strong> in response to food.</p></li><li><p>Gastric motility and secretions are controlled by the brain, enteric nervous system (ENS), and hormones, facilitating <strong><mark data-color="blue" style="background-color: blue; color: inherit">mechanical breakdown and protein digestion.</mark></strong></p></li></ul><p></p><p><strong><u>3) </u><mark data-color="purple" style="background-color: purple; color: inherit"><u>Intestinal Phase (Neural - Brain, Enteric Nervous System, Hormones)</u></mark><u>:</u></strong></p><p>Triggers: Food entering the small intestine.</p><p><strong>Mechanisms:</strong></p><ul><li><p>Controlled by neural (brain and ENS) and hormonal signals.</p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">Hormones inhibit gastric secretion and motility </mark><strong><mark data-color="red" style="background-color: red; color: inherit">[enterogastrone] </mark></strong><mark data-color="red" style="background-color: red; color: inherit">while promoting biliary and pancreatic secretions into the duodenum </mark><strong><mark data-color="red" style="background-color: red; color: inherit">[CCK / Gastrin]</mark></strong><mark data-color="red" style="background-color: red; color: inherit">.</mark></p></li><li><p><strong><mark data-color="blue" style="background-color: blue; color: inherit">Most digestion and nutrient absorption occur during this phase.</mark></strong></p></li></ul><p></p>
12
New cards

What are the main gastric secretions in the stomach?

Pepsinogen → Pepsin / Hydrochloric acid (HCl) for pepsin activation / Intrinsic factor, crucial for Vitamin B12 / Mucus / Gastric Lipase / Water

Chief Cells (located in gastric pits):

Secrete Pepsinogen, which activates to pepsin to begin protein digestion.

Parietal Cells (located in gastric pits):

Secrete hydrochloric acid (HCl) to create an acidic environment for pepsin activation and pathogen control.

Secrete intrinsic factor, crucial for vitamin B12 absorption in the ileum.

Surface Enterocytes:

Secrete mucus to protect the stomach lining from acid and enzymes.

Other Secretions:

Gastric lipase, which starts breaking down fats.

Water, contributing to the luminal fluid environment.

<p><mark data-color="purple" style="background-color: purple; color: inherit">Pepsinogen → Pepsin / Hydrochloric acid (HCl) for pepsin activation / </mark><strong><mark data-color="purple" style="background-color: purple; color: inherit">Intrinsic factor, crucial for Vitamin B12</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> / Mucus / Gastric Lipase / Water</mark></p><p>—</p><p><strong><u>Chief Cells (located in gastric pits):</u></strong></p><p>Secrete <mark data-color="red" style="background-color: red; color: inherit">Pepsinogen</mark>, which activates to <mark data-color="red" style="background-color: red; color: inherit">pepsin to begin protein digestion.</mark></p><p></p><p><strong><u>Parietal Cells (located in gastric pits):</u></strong></p><p>Secrete <strong><mark data-color="red" style="background-color: red; color: inherit">hydrochloric acid (HCl)</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> to create an acidic environment for pepsin activation</mark> and <mark data-color="red" style="background-color: red; color: inherit">pathogen control.</mark></p><p>Secrete <strong><mark data-color="red" style="background-color: red; color: inherit">intrinsic factor</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, crucial for vitamin B12</mark> absorption in the ileum.</p><p></p><p><strong><u>Surface Enterocytes:</u></strong></p><p>Secrete <strong><mark data-color="red" style="background-color: red; color: inherit">mucus</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> to protect the stomach lining from acid and enzymes.</mark></p><p></p><p><strong><u>Other Secretions:</u></strong></p><p><strong><mark data-color="red" style="background-color: red; color: inherit">Gastric lipase</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, which starts breaking down fats.</mark></p><p><strong><mark data-color="red" style="background-color: red; color: inherit">Water</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, contributing to the luminal fluid environment.</mark></p><p></p>
13
New cards

What is the Mechanism of acid secretion in the stomach?

Hydrochloric acid secretion is critical for creating an acidic environment in the stomach lumen to break down food and activate digestive enzymes like pepsin.

H⁺ secretion results in a net movement of HCO₃⁻ into the blood, maintaining cellular balance while the stomach lumen becomes highly acidic.

Mechanism:

  1. H⁺ Production:

    • CO₂ and H₂O react, catalyzed by carbonic anhydrase, to form H₂CO₃ (carbonic acid).

    • H₂CO₃ dissociates → HCO₃⁻ (bicarbonate) + H⁺, with H⁺ used for acid secretion.

  2. Cl⁻ Uptake:

    • Cl⁻ is obtained from the blood via a HCO₃⁻/Cl⁻ exchanger on the basolateral membrane, moving Cl⁻ into the cell while HCO₃⁻ exits into the blood.

  3. Proton Pump (H+/K+-ATPase):

    • Requires ATP to pump H⁺ ions into the lumen against their concentration gradient.

  4. Acid Formation:

    • H⁺ (via the proton pump) and Cl⁻ (via channels) enter the lumen, forming HCl.

    • The liberation of H⁺, proton pump activity, and Cl⁻ movement create the acidic environment.

  • Water Movement:

    • Net ion movement (H⁺ and Cl⁻) into the lumen drives water movement via osmosis, contributing to the fluid in the stomach.

Clinical Relevance:

  • Proton Pump Inhibitors (PPIs): Block the H+/K+-ATPase pump to inhibit acid secretion, used to treat reflux and related conditions by reducing stomach acidity.

<p><strong><mark data-color="purple" style="background-color: purple; color: inherit">Hydrochloric acid</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> secretion is critical for </mark><strong><mark data-color="purple" style="background-color: purple; color: inherit">creating an acidic environment in the stomach lumen to break down food and activate digestive enzymes like pepsin.</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> </mark></p><p><strong><mark data-color="blue" style="background-color: blue; color: inherit">H⁺ secretion results in a net movement of HCO₃⁻ into the blood, maintaining cellular balance while the stomach lumen becomes highly acidic.</mark></strong></p><p></p><p><strong><u>Mechanism:</u></strong></p><ol><li><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">H⁺ Production:</mark></strong></p><ul><li><p><mark data-color="red" style="background-color: red; color: inherit">CO₂ and H₂O react, catalyzed by </mark><strong><mark data-color="red" style="background-color: red; color: inherit">carbonic anhydrase</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, to form </mark><strong><mark data-color="red" style="background-color: red; color: inherit">H₂CO₃</mark></strong> (carbonic acid).</p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">H₂CO₃ dissociates → </mark><strong><mark data-color="red" style="background-color: red; color: inherit">HCO₃⁻</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (bicarbonate) + </mark><strong><mark data-color="red" style="background-color: red; color: inherit">H⁺</mark></strong>, with H⁺ used for acid secretion.</p></li></ul></li><li><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">Cl⁻ Uptake:</mark></strong></p><ul><li><p>Cl⁻ is obtained from the blood via a <strong><mark data-color="red" style="background-color: red; color: inherit">HCO₃⁻/Cl⁻ exchanger</mark></strong> on the <strong><mark data-color="red" style="background-color: red; color: inherit">basolateral membrane</mark></strong>, moving <mark data-color="red" style="background-color: red; color: inherit">Cl⁻ into the cell while HCO₃⁻ exits</mark> into the blood.</p></li></ul></li><li><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">Proton Pump (H+/K+-ATPase):</mark></strong></p><ul><li><p>Requires <mark data-color="red" style="background-color: red; color: inherit">ATP to pump H⁺ ions into the lumen against their concentration gradient.</mark></p></li></ul></li><li><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">Acid Formation:</mark></strong></p><ul><li><p><mark data-color="red" style="background-color: red; color: inherit">H⁺ (via the proton pump) and Cl⁻ (via channels) enter the lumen, forming HCl.</mark></p></li><li><p>The liberation of H⁺, proton pump activity, and Cl⁻ movement create the acidic environment.</p></li></ul></li></ol><p></p><ul><li><p><strong>Water Movement:</strong></p><ul><li><p>Net ion movement (H⁺ and Cl⁻) into the lumen <strong><mark data-color="blue" style="background-color: blue; color: inherit">drives water movement via osmosis</mark></strong>, contributing to the fluid in the stomach.</p></li></ul></li></ul><p>—</p><p><strong>Clinical Relevance:</strong></p><ul><li><p><strong><mark data-color="yellow" style="background-color: yellow; color: inherit">Proton Pump Inhibitors (PPIs):</mark></strong><mark data-color="yellow" style="background-color: yellow; color: inherit"> Block the H+/K+-ATPase pump to inhibit acid secretion, used to treat reflux and related conditions by reducing stomach acidity.</mark></p></li></ul><p></p><p></p>
14
New cards

Why do parietal cells have lots of mitochondria?

Parietal cells have lots of mitochondria because they need LARGE AMOUNTS OF ATP to power the H⁺/K⁺-ATPase pump, which secretes HCl into the stomach.

<p><span>Parietal cells have </span><strong>lots of mitochondria</strong><span> because they need </span><strong>LARGE AMOUNTS OF ATP</strong><span> to power the </span><strong>H⁺/K⁺-ATPase pump</strong><span>, which secretes </span><strong>HCl</strong><span> into the stomach.</span></p>
15
New cards

Why do Parietal cells have tubulovesicles?

Tubulovesicles act as a reservoir for proton pumps:

  • Tubulovesicles are little bits of epithelium which store proton pumps (H⁺/K⁺-ATPase) when inactive

  • This rapidly mobilizes to the cell membrane when acid secretion is needed (e.g., by food or gastrin).

<p><strong>Tubulovesicles </strong>act as a <strong>reservoir</strong> for proton pumps:</p><ul><li><p><strong>Tubulovesicles </strong>are little bits of epithelium which store <strong>proton pumps (H⁺/K⁺-ATPase)</strong> when inactive</p></li><li><p>This rapidly mobilizes to the cell membrane when acid secretion is needed (e.g., by food or gastrin).</p></li></ul><p></p>
16
New cards

How is acid secretion from the parietal cell increased in response to stimulation?

Resting State (Basal secretion):

  • Proton pumps (H⁺/K⁺-ATPase) are stored in tubulovesicles (inactive).

  • The luminal membrane has minimal surface area.

Upon Stimulation (By Gastrin / Histamine / Acetylcholine - ACh):

  1. Tubulovesicles rearrange, fusing with the canaliculi (invaginations of the epithelium).

  2. This dramatically increases surface area, inserting more proton pumps into the membrane.

  3. Results in Rapid, high-volume HCl secretion into the stomach.

  • Allows a fast, powerful response to digestive demands.

  • Without this mechanism, acid secretion would be too slow/weak.

<p><strong><u>Resting State (Basal secretion):</u></strong></p><ul><li><p class="ds-markdown-paragraph"><mark data-color="blue" style="background-color: blue; color: inherit">Proton pumps (H⁺/K⁺-ATPase) are stored in </mark><strong><mark data-color="blue" style="background-color: blue; color: inherit">tubulovesicles</mark></strong><mark data-color="blue" style="background-color: blue; color: inherit"> (inactive).</mark></p></li><li><p class="ds-markdown-paragraph">The luminal membrane has minimal surface area.</p></li></ul><p class="ds-markdown-paragraph"></p><p class="ds-markdown-paragraph"><strong><u>Upon Stimulation </u><mark data-color="purple" style="background-color: purple; color: inherit"><u>(By Gastrin / Histamine / </u></mark></strong><span><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Acetylcholine - </u></mark></strong></span><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>ACh):</u></mark></strong></p><ol><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">Tubulovesicles rearrange</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, </mark><strong><mark data-color="red" style="background-color: red; color: inherit">fusing with the canaliculi (invaginations of the epithelium).</mark></strong></p></li><li><p class="ds-markdown-paragraph">This <strong>dramatically <mark data-color="red" style="background-color: red; color: inherit">increases surface area</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, inserting </mark><strong><mark data-color="red" style="background-color: red; color: inherit">more proton pumps</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> into the membrane.</mark></p></li><li><p class="ds-markdown-paragraph">Results in <strong><mark data-color="red" style="background-color: red; color: inherit">Rapid, high-volume HCl secretion</mark></strong> into the stomach.</p></li></ol><p></p><ul><li><p class="ds-markdown-paragraph">Allows a <strong>fast, powerful response</strong> to digestive demands.</p></li><li><p class="ds-markdown-paragraph">Without this mechanism, acid secretion would be too slow/weak.</p></li></ul><p></p>
17
New cards

How is acid secretion regulated by parietal cells? Hint 3 ways

Neural Regulation:

Enteric Nervous System (ENS) + Vagus Nerve (CNS): → Responds to distension from your stomach to secrete acids

  • Mechanism:

    • Vagus/ENS releases acetylcholine (ACh).

    • ACh binds muscarinic (M₃) receptors on parietal cells → directly stimulates acid secretion.

    • Also acts on ECL cells (indirectly via histamine) and D cells (inhibitory).

Paracrine Regulation:

  • Acetylcholine (ACh): acts via the muscarinic receptor, causing direct stimulation onto the Parietal cells and ECL cells and D cells

  • ECL cells → releases histamine → binds H₂ receptors on parietal cells → potent acid secretion.

    ~~

  • D cells → releases somatostatin (inhibitory).

  • Inhibition: Somatostatin (from D cells) is the brake on BOTH pathways (blocks ECL/parietal cells).

  • Binds to SST2 receptors.

Endocrine Regulation:

  • Gastrin (from G cells in stomach antrum): Responds to Protein/amino acids presence in stomach lumen.

  • Mechanism:

    • Gastrin circulates in blood → binds TO CCK₂ receptors on BOTH:

    • Parietal cells (minor direct effect).

    • ECL cells → releases histamine → amplifies acid secretion.

Note: Due to Paracrine regulation, muscarine and histamine agonists help secrete gastrin

But all controlled by proton pump

<p><strong><u>Neural Regulation:</u></strong></p><p><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Enteric Nervous System (ENS)</u></mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"><u> + </u></mark><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Vagus Nerve (CNS)</u></mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>:</u></mark><u> → Responds to distension from your stomach to secrete acids</u></p><ul><li><p class="ds-markdown-paragraph">Mechanism:</p><ul><li><p class="ds-markdown-paragraph"><mark data-color="red" style="background-color: red; color: inherit">Vagus/ENS releases </mark><strong><mark data-color="red" style="background-color: red; color: inherit">acetylcholine (ACh)</mark></strong><mark data-color="red" style="background-color: red; color: inherit">.</mark></p></li><li><p class="ds-markdown-paragraph">ACh binds <strong>muscarinic (M₃) receptors</strong> on parietal cells → <strong>directly stimulates acid secretion</strong>.</p></li><li><p class="ds-markdown-paragraph">Also acts on <strong>ECL cells</strong> (indirectly via histamine) and <strong>D cells</strong> (inhibitory).</p></li></ul></li></ul><p class="ds-markdown-paragraph"></p><p class="ds-markdown-paragraph"><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Paracrine Regulation:</u></mark></strong></p><ul><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">Acetylcholine (ACh)</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: acts via the muscarinic receptor, causing direct stimulation onto the </mark><strong><mark data-color="red" style="background-color: red; color: inherit">Parietal cells</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> and </mark><strong><mark data-color="red" style="background-color: red; color: inherit">ECL cells and D cells</mark></strong></p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">ECL cells</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> → releases </mark><strong><mark data-color="red" style="background-color: red; color: inherit">histamine</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> → binds </mark><strong><mark data-color="red" style="background-color: red; color: inherit">H₂ receptors</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> on parietal cells → </mark><strong><mark data-color="red" style="background-color: red; color: inherit">potent acid secretion</mark></strong><mark data-color="red" style="background-color: red; color: inherit">.</mark></p><p class="ds-markdown-paragraph">~~</p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">D cells</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> → releases </mark><strong><mark data-color="red" style="background-color: red; color: inherit">somatostatin</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (inhibitory).</mark></p></li><li><p><strong><mark data-color="green" style="background-color: green; color: inherit">Inhibition: Somatostatin</mark></strong><mark data-color="green" style="background-color: green; color: inherit"> (from D cells) is the </mark><strong><mark data-color="green" style="background-color: green; color: inherit">brake</mark></strong><mark data-color="green" style="background-color: green; color: inherit"> on BOTH pathways (blocks ECL/parietal cells).</mark></p></li><li><p><strong><mark data-color="green" style="background-color: green; color: inherit">Binds to SST2 receptors.</mark></strong></p></li></ul><p></p><p><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Endocrine Regulation:</u></mark></strong></p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Gastrin</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (from </mark><strong><mark data-color="red" style="background-color: red; color: inherit">G cells</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> in stomach antrum): Responds to </mark><strong><mark data-color="red" style="background-color: red; color: inherit">Protein/amino acids presence in stomach lumen.</mark></strong></p></li><li><p class="ds-markdown-paragraph">Mechanism:</p><ul><li><p class="ds-markdown-paragraph"><mark data-color="red" style="background-color: red; color: inherit">Gastrin circulates in blood → binds </mark><mark data-color="purple" style="background-color: purple; color: inherit">TO </mark><strong><mark data-color="purple" style="background-color: purple; color: inherit">CCK₂ receptors</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> on BOTH:</mark></p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">Parietal cells</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (minor direct effect).</mark></p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">ECL cells</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> → releases histamine → amplifies acid secretion.</mark></p></li></ul></li></ul><p></p><p>Note: Due to Paracrine regulation, muscarine and histamine agonists help secrete gastrin</p><p>But all controlled by proton pump</p>
18
New cards

What 4 endocrine factors effect the stomach?

Regulation of Stomach Function:

Gastrin:

From G cells in the pyloric antrum (near the duodenum).

  • Activators: Release stimulated by Proteins, coffee, alcohol.

  • Inhibitor: Low gastric pH (<3) ("stop if the stomach is empty/acidic").

Induces gastric secretions, increases motility (via parietal + ECL cells → histamine).

Cholecystokinin (CCK):

From I cells in the duodenal wall.

  • Release stimulated by Fats

  • Slows gastric motility and acid secretion to stop stomach releasing load into the duodenum if at full capacity.

Secretin:

From S cells in the duodenal wall.

  • Release stimulated by Acidic chyme

  • Inhibits gastric secretion (protecting the duodenum).

GIP & GLP-1:

GIP from the Small intestine (K cells) & GLP-1 from the Ileum/colon (L cells) respectively.

  • Release stimulated by arrival of fats & glucose

  • Incretin effect: Boost insulin (GLP-1 > GIP).

  • Inhibits gastric motility/secretion (protecting the duodenum).

Feedback Loops:

  • Acid turns off gastrin (via somatostatin).

  • Nutrients trigger incretins (GLP-1/GIP) to optimize absorption.

<p><strong><u>Regulation of Stomach Function:</u></strong></p><p><strong><mark data-color="green" style="background-color: green; color: inherit"><u>Gastrin:</u></mark></strong></p><p><strong>From </strong>G cells in the <strong>pyloric antrum</strong> (near the duodenum).</p><ul><li><p class="ds-markdown-paragraph"><strong>Activators</strong>: Release stimulated by Proteins, coffee, alcohol.</p></li><li><p class="ds-markdown-paragraph"><strong>Inhibitor</strong>: Low gastric pH (&lt;3) ("stop if the stomach is empty/acidic").</p></li></ul><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">Induces gastric secretions, increases motility (via parietal + ECL cells → histamine).</mark></strong></p><p></p><p><strong><mark data-color="red" style="background-color: red; color: inherit"><u>Cholecystokinin (CCK):</u></mark></strong></p><p><strong>From </strong>I cells in the <strong>duodenal wall</strong>.</p><ul><li><p class="ds-markdown-paragraph">Release stimulated by Fats</p></li><li><p class="ds-markdown-paragraph"><strong>Slows gastric motility</strong> and <strong>acid secretion to </strong>stop stomach releasing load into the duodenum if at full capacity.</p></li></ul><p class="ds-markdown-paragraph"></p><p class="ds-markdown-paragraph"><strong><mark data-color="green" style="background-color: green; color: inherit"><u>Secretin:</u></mark></strong></p><p class="ds-markdown-paragraph"><strong>From </strong>S cells in the <strong>duodenal wall</strong>.</p><ul><li><p class="ds-markdown-paragraph">Release stimulated by Acidic chyme</p></li><li><p class="ds-markdown-paragraph">Inhibits gastric secretion (protecting the duodenum).</p></li></ul><p class="ds-markdown-paragraph"></p><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit"><u>GIP &amp; GLP-1:</u></mark></strong></p><p class="ds-markdown-paragraph">GIP <strong>from the </strong>Small intestine (K cells) &amp; GLP-1 from the Ileum/colon (L cells) respectively.</p><ul><li><p class="ds-markdown-paragraph">Release <mark data-color="purple" style="background-color: purple; color: inherit">stimulated by arrival of fats &amp; glucose</mark></p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="purple" style="background-color: purple; color: inherit">Incretin effect</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit">: Boost insulin (GLP-1 &gt; GIP).</mark></p></li><li><p class="ds-markdown-paragraph">Inhibits gastric motility/secretion (protecting the duodenum).</p></li></ul><p></p><p><strong><mark data-color="blue" style="background-color: blue; color: inherit">Feedback Loops</mark></strong><mark data-color="blue" style="background-color: blue; color: inherit">:</mark></p><ul><li><p class="ds-markdown-paragraph"><mark data-color="blue" style="background-color: blue; color: inherit">Acid turns off gastrin (via somatostatin).</mark></p></li><li><p class="ds-markdown-paragraph"><mark data-color="blue" style="background-color: blue; color: inherit">Nutrients trigger incretins (GLP-1/GIP) to optimize absorption.</mark></p></li></ul><p></p>
19
New cards

What is the main function of small intestine (SI) and and what else does it secrete to aid it carrying out this function?

Main Function: Absorption

The SI is where 90% of nutrient absorption occurs, enabled by:

  • Villi / Microvilli: Massive surface area expansion.

  • Brush Border Enzymes: Final digestion at the site of absorption.

Secretions Supporting Absorption:

Mucus (from Goblet Cells) - Protective, Defensive barrier (Forms the unstirred layer atop villi) and a lubricant (Enabling smooth chyme movement)

Isotonic Saline (from Crypt Cells) (base of villi) - Maintains osmotic balance for nutrient transport. Prevents dehydration of the epithelial surface.

Alkaline Mucus (from Brunner’s Glands) (Duodenum (submucosa)) - Neutralizes stomach acid ("stops the duodenum from being burned"). Rich in HCO₃⁻ (bicarbonate) to raise pH for enzyme function.

Note:

Surface enterocytes (on villi) - Make many digestive enzymes which are then embedded in the glycocalyx of their brush border, and a bicarbonate-rich fluid - to neutralise the acidic chyme (a semi-fluid mixture of partially digested food, stomach acid, digestive enzymes, and fluid) coming through the stomach.

Brush Border Enzymes (on Enterocytes) (Embedded in the glycocalyx) - Final digestion just before absorption. Eg. Lactase, sucrase (carbs), peptidases (proteins), enterokinase (activates trypsin).

<p><strong><u>Main Function: </u><mark data-color="purple" style="background-color: purple; color: inherit"><u>Absorption</u></mark></strong></p><p>The SI is where <strong>90% of nutrient absorption</strong> occurs, enabled by:</p><ul><li><p class="ds-markdown-paragraph"><strong><mark data-color="purple" style="background-color: purple; color: inherit">Villi / Microvilli</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit">: Massive </mark><strong><mark data-color="purple" style="background-color: purple; color: inherit">surface area</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> expansion.</mark></p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="red" style="background-color: red; color: inherit">Brush Border Enzymes</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: Final digestion </mark><em><mark data-color="red" style="background-color: red; color: inherit">at the site</mark></em><mark data-color="red" style="background-color: red; color: inherit"> of absorption.</mark></p></li></ul><p class="ds-markdown-paragraph"></p><p class="ds-markdown-paragraph"><strong><u>Secretions Supporting Absorption:</u></strong></p><p>• <strong><mark data-color="purple" style="background-color: purple; color: inherit">Mucus (from Goblet Cells)</mark></strong> - <mark data-color="red" style="background-color: red; color: inherit">Protective, </mark><strong><mark data-color="red" style="background-color: red; color: inherit">Defensive barrie</mark>r</strong> (Forms the <strong><mark data-color="red" style="background-color: red; color: inherit">unstirred layer</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> atop villi</mark>) and a <mark data-color="red" style="background-color: red; color: inherit">lubricant </mark>(Enabling smooth chyme movement)</p><p>• <strong><mark data-color="red" style="background-color: red; color: inherit">Isotonic Saline (from Crypt Cells)</mark> </strong>(base of villi) - Maintains <strong><mark data-color="red" style="background-color: red; color: inherit">osmotic balance</mark></strong> for <mark data-color="blue" style="background-color: blue; color: inherit">nutrient transport. Prevents dehydration of the epithelial surface.</mark></p><p>•<mark data-color="red" style="background-color: red; color: inherit"> </mark><strong><mark data-color="red" style="background-color: red; color: inherit">Alkaline Mucus (from Brunner’s Glands)</mark> (</strong>Duodenum (submucosa)) - <strong><mark data-color="blue" style="background-color: blue; color: inherit">Neutralizes stomach acid</mark></strong><mark data-color="blue" style="background-color: blue; color: inherit"> ("stops the duodenum from being burned"). Rich in </mark><strong><mark data-color="blue" style="background-color: blue; color: inherit">HCO₃⁻</mark></strong><mark data-color="blue" style="background-color: blue; color: inherit"> (bicarbonate) to raise pH for enzyme function.</mark></p><p></p><p>Note:</p><p><strong><mark data-color="green" style="background-color: green; color: inherit">Surface enterocytes</mark></strong><mark data-color="green" style="background-color: green; color: inherit"> (on villi) - Make many </mark><strong><mark data-color="green" style="background-color: green; color: inherit">digestive enzymes which are then embedded in the glycocalyx of their brush border</mark></strong><mark data-color="green" style="background-color: green; color: inherit">, and a bicarbonate-rich fluid - to neutralise the acidic chyme (a semi-fluid mixture of partially digested food, stomach acid, digestive enzymes, and fluid) coming through the stomach.</mark></p><p><strong><mark data-color="green" style="background-color: green; color: inherit">Brush Border Enzymes (on Enterocytes) (Embedded in the glycocalyx</mark></strong><mark data-color="green" style="background-color: green; color: inherit">) - </mark><strong><mark data-color="green" style="background-color: green; color: inherit">Final digestion </mark><em><mark data-color="green" style="background-color: green; color: inherit">just before absorption. </mark></em><mark data-color="green" style="background-color: green; color: inherit">Eg. Lactase, sucrase (carbs), peptidases (proteins), enterokinase (activates trypsin).</mark></strong></p>
20
New cards

What is the difference between endocrine and exocrine secretions?

Endocrine glands:

  • Release hormones directly into the bloodstream, where they travel to cells throughout the body. Endocrine glands are also known as ductless glands. e.g. pituitary, thyroid, and adrenal glands

Exocrine glands:

  • Release substances through ducts onto the body's surfaces, such as the skin or oral cavity. e.g. salivary, sweat, and sebaceous glands

21
New cards

What secretions get released into the duodenum and how does this occur

The duodenum receives pancreatic juice and bile, which are produced separately & essential for digestion, acid neutralization, and fat processing.

Discharged together into the duodenum via hepatopancreatic ampulla through a coordinated mechanism.

Biliary Secretions (Bile):

  • Continuously synthesized by the liver → stored and concentrated in the gallbladder.

  • Travels via the common bile duct.

  • Bile salts (critical for fat emulsification).

  • Bilirubin (waste product).

  • Cholesterol/phospholipids.

  • Bile breaks fats into droplets → pancreatic lipase can efficiently digest them.

Pancreatic Secretions:

Exocrine pancreas releases:

  • Digestive enzymes (acinar cells) (Proteases (e.g., trypsin), lipase, amylase.)

  • Bicarbonate-rich fluid (duct cells): Neutralizes stomach acid via the pancreatic duct.

How They Reach the Duodenum:

  1. Pathway Convergence:

    • The common bile duct (carrying bile) and pancreatic duct merge at the hepatopancreatic ampulla (Ampulla of Vater).

  2. Sphincter of Oddi:

    • A muscular valve that normally remains closed to prevent leakage.

    • Relaxation triggered by:

      • CCK (released in response to fats in the duodenum).

      • Secretin (stimulated by acidic chyme).

    • Allows simultaneous release of bile and pancreatic juice.

Important for digestion, lipid digestion, and neutralisation of the chyme

<p>The duodenum receives <strong><mark data-color="purple" style="background-color: purple; color: inherit">pancreatic juice</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> and </mark><strong><mark data-color="purple" style="background-color: purple; color: inherit">bile</mark></strong>, which are produced separately &amp; essential for digestion, acid neutralization, and fat processing.</p><p><em>Discharged together</em> into the duodenum via <strong><mark data-color="purple" style="background-color: purple; color: inherit">hepatopancreatic ampulla</mark></strong> through a coordinated mechanism.<br></p><p><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Biliary Secretions (Bile):</u></mark></strong></p><ul><li><p>Continuously <mark data-color="red" style="background-color: red; color: inherit">synthesized by the </mark><strong><mark data-color="red" style="background-color: red; color: inherit">liver</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> → stored and concentrated in the </mark><strong><mark data-color="red" style="background-color: red; color: inherit">gallbladder</mark></strong><mark data-color="red" style="background-color: red; color: inherit">.</mark></p></li><li><p>Travels via the <strong><mark data-color="red" style="background-color: red; color: inherit">common bile duct</mark></strong><mark data-color="red" style="background-color: red; color: inherit">.</mark></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Bile salts</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (critical for fat emulsification).</mark></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Bilirubin</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (waste product).</mark></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Cholesterol/phospholipids</mark></strong><mark data-color="red" style="background-color: red; color: inherit">.</mark></p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">Bile breaks fats into droplets → pancreatic lipase can efficiently digest them.</mark></p></li></ul><p></p><p><strong><mark data-color="purple" style="background-color: purple; color: inherit"><u>Pancreatic Secretions:</u></mark></strong></p><p>Exocrine pancreas releases:</p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Digestive enzymes</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (acinar cells)</mark> (<em>Proteases</em> (e.g., trypsin), <em>lipase</em>, <em>amylase</em>.)</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Bicarbonate-rich fluid</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (duct cells)</mark>: Neutralizes stomach acid via the <strong>pancreatic duct</strong>.</p></li></ul><p></p><p><strong><u>How They Reach the Duodenum:</u></strong></p><ol><li><p class="ds-markdown-paragraph"><strong>Pathway Convergence</strong>:</p><ul><li><p class="ds-markdown-paragraph">The <strong>common bile duct</strong> (carrying bile) and <strong>pancreatic duct</strong> merge at the <strong><mark data-color="purple" style="background-color: purple; color: inherit">hepatopancreatic ampulla</mark></strong> (Ampulla of Vater).</p></li></ul></li><li><p class="ds-markdown-paragraph"><strong>Sphincter of Oddi</strong>:</p><ul><li><p class="ds-markdown-paragraph">A muscular valve that <em>normally remains closed</em> to prevent leakage.</p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="purple" style="background-color: purple; color: inherit">Relaxation triggered by</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit">:</mark></p><ul><li><p class="ds-markdown-paragraph"><strong><mark data-color="purple" style="background-color: purple; color: inherit">CCK</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> (released in response to </mark><em><mark data-color="purple" style="background-color: purple; color: inherit">fats</mark></em><mark data-color="purple" style="background-color: purple; color: inherit"> in the duodenum).</mark></p></li><li><p class="ds-markdown-paragraph"><strong><mark data-color="purple" style="background-color: purple; color: inherit">Secretin</mark></strong><mark data-color="purple" style="background-color: purple; color: inherit"> (stimulated by </mark><em><mark data-color="purple" style="background-color: purple; color: inherit">acidic chyme</mark></em><mark data-color="purple" style="background-color: purple; color: inherit">).</mark></p></li></ul></li><li><p class="ds-markdown-paragraph"><mark data-color="purple" style="background-color: purple; color: inherit">Allows simultaneous release of bile and pancreatic juice.</mark></p></li></ul></li></ol><p></p><p>Important for digestion, lipid digestion, and neutralisation of the chyme</p>
22
New cards

What are the 2 main components of Pancreas exocrine secretions

1) Alkaline fluid rich in HCO3-

• Produced largely by the cells of the pancreatic duct

• Role is to neutralize the acidic chyme entering the small intestine from the stomach.

2) Digestive enzymes

• Includes endopeptidases, carboxypeptidase, amylase, lipase, etc

Produced largely by the acinar cells, and stored intracellularly as inactive precursor forms in ‘zymogen’ granules

• Released by exocytosis

• Role is to break down most macromolecules found in food

23
New cards

What hormones affect pancreatic exocrine secretion

CCK:

- Released from duodenal wall by fats etc

- Induces release of enzyme-rich secretions

Secretin:

- Released from duodenal wall by acidic chyme

- Induces release of bicarbonate-rich secretions

24
New cards

What is the Mechanism of fluid secretion by pancreatic duct cells?

  1. HCO₃⁻ Production:

    • CO₂ and H₂O react, catalyzed by carbonic anhydrase, to form H₂CO₃ (carbonic acid).

    • H₂CO₃ dissociates → HCO₃⁻ (bicarbonate) + H⁺, with HCO₃⁻ used for neutralisation → (Very important as it alkali and will neutralise any acid)

  2. Energy provided ultimately by Na pump on basal (blood) side of cell

HCO₃⁻ efflux on luminal side via anion exchanger

• CFTR ion channel takes the Cl- out of the cell

Note:

Defect in Cl- channel (CTFR type) in cystic fibrosis results in failure to produce this secretion, and therefore no delivery of enzymes = can't produce the right pancreatic digestive juices or neutralise the acidic chyme

<ol><li><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">HCO₃⁻ Production:</mark></strong></p><ul><li><p><mark data-color="red" style="background-color: red; color: inherit">CO₂ and H₂O react, catalyzed by </mark><strong><mark data-color="red" style="background-color: red; color: inherit">carbonic anhydrase</mark></strong><mark data-color="red" style="background-color: red; color: inherit">, to form </mark><strong><mark data-color="red" style="background-color: red; color: inherit">H₂CO₃</mark></strong> (carbonic acid).</p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">H₂CO₃ dissociates → </mark><strong><mark data-color="red" style="background-color: red; color: inherit">HCO₃⁻</mark></strong><mark data-color="red" style="background-color: red; color: inherit"> (bicarbonate) + </mark><strong><mark data-color="red" style="background-color: red; color: inherit">H⁺</mark></strong>, with <strong><mark data-color="red" style="background-color: red; color: inherit">HCO₃⁻</mark></strong> used for neutralisation → (Very important as it alkali and will neutralise any acid)</p></li></ul></li><li><p>Energy provided ultimately by Na pump on basal (blood) side of cell</p></li></ol><p>—</p><p>• <strong><mark data-color="red" style="background-color: red; color: inherit">HCO₃⁻</mark></strong> efflux on <strong><mark data-color="red" style="background-color: red; color: inherit">luminal side</mark></strong> via anion exchanger</p><p>• CFTR ion channel takes the Cl- out of the cell</p><p>Note:</p><p>Defect in Cl- channel (CTFR type) in cystic fibrosis results in failure to produce this secretion, and therefore no delivery of enzymes = can't produce the right pancreatic digestive juices or neutralise the acidic chyme</p>
25
New cards

How is secretion of pancreatic alkaline fluid matched to the acid load arriving from the stomach ?

  1. Acid Detection: The acid chyme from the stomach enters the duodenum, acting as the trigger based on the acid load's intensity.

  2. Secretin Release: The duodenal wall responds to the acid by releasing secretin into the bloodstream. The amount of secretin released is PROPORTIONAL to the acid level—more acid leads to more secretin.

  3. Pancreatic Response: Secretin stimulates the pancreatic duct cells to secrete bicarbonate, an alkaline fluid. Higher secretin levels (from more acid) result in greater bicarbonate secretion.

  4. Neutralization: The bicarbonate enters the small intestine and neutralizes the acid, with the quantity of alkaline fluid matched to the acid load to achieve a balanced pH.

This ensures the pancreas secretes just enough alkaline fluid to neutralize the incoming acid, protecting the small intestine and optimizing digestion.

Note: The bicarbonate can feedback to inhibit gut motility (Negative Feedback Loop)

<ol><li><p><strong>Acid Detection</strong>: The acid chyme from the stomach enters the duodenum, acting as the <strong><mark data-color="red" style="background-color: red; color: inherit">trigger based on the acid load's intensity.</mark></strong></p></li><li><p><strong>Secretin Release</strong>: The duodenal wall <strong>responds to the acid</strong> by <strong><mark data-color="red" style="background-color: red; color: inherit">releasing secretin into the bloodstream.</mark></strong> The amount of secretin released is <strong><mark data-color="red" style="background-color: red; color: inherit">PROPORTIONAL </mark></strong>to the acid level—more acid leads to more secretin.</p></li><li><p><strong>Pancreatic Response</strong>: <strong><mark data-color="red" style="background-color: red; color: inherit">Secretin stimulates the pancreatic duct cells to secrete bicarbonate, an alkaline fluid.</mark></strong> Higher secretin levels (from more acid) result<strong><mark data-color="purple" style="background-color: purple; color: inherit"> in greater bicarbonate secretion.</mark></strong></p></li><li><p><strong>Neutralization</strong>: The bicarbonate enters the small intestine and neutralizes the acid, with the quantity of alkaline fluid matched to the acid load to <strong><mark data-color="purple" style="background-color: purple; color: inherit">achieve a balanced pH.</mark></strong></p></li></ol><p>This ensures the pancreas secretes just enough alkaline fluid to neutralize the incoming acid, protecting the small intestine and optimizing digestion.</p><p>Note: The bicarbonate can feedback to inhibit gut motility (Negative Feedback Loop)</p>
26
New cards

How is CCK released in response to chyme in the duodenum?

1) Fats and protein products enter duodenum

2) Release of CCK from duodenal wall

3) Increase in Plasma CCK acts on pancreatic acinar cells

4) Increase in Enzyme secretion into pancreatic juice

5) Increase in Delivery of pancreatic & biliary secretions to duodenum

6) Digestion of fat and protein in small intestine

<p>1) Fats and protein products enter duodenum</p><p>2) Release of CCK from duodenal wall </p><p>3) Increase in Plasma CCK acts on pancreatic acinar cells</p><p>4) Increase in Enzyme secretion into pancreatic juice </p><p>5) Increase in Delivery of pancreatic &amp; biliary secretions to duodenum</p><p>6) Digestion of fat and protein in small intestine</p>
27
New cards

Bile Secretion - How is it primarily secreted, Secondarily modified and Released from the Gall bladder?

Primary secretion made in the Liver:

• solutes made or extracted from the blood by hepatocytes, and discharged into bile canaliculi containing extracellular fluid

• bile salt/acid component important for the emulsification of fats in the SI

• bile pigments (e.g. bilirubin) = breakdown product of Hb (porphyrin ring), for excretion

• other components include cholesterol, lecithin

Secondary modification of the fluid as it passes along Bile Ducts:

• water and HCO3- added

• mechanism similar to that for pancreatic alkaline secretion

• stimulated by secretin

Release from gall bladder (where stored):

• CCK causes gallbladder to contract & sphincter of Oddi to relax

28
New cards

Small intestine: Summary of control of secretions

In summary, the presence of food (acid, proteins, fats) and distension in the duodenum triggers a coordinated response via hormones (secretin, CCK, GIP, GLP-1) and vagal efferents to secrete bile and pancreatic juice, aiding digestion and glucose metabolism.

  • Stimuli in the Duodenum:

    • Acid, protein, and fats from the stomach enter the duodenum.

    • Distension of the duodenum activates mechanoreceptors.

  • Hormonal Responses:

    • Secretin: Triggered by acid, it stimulates the pancreas to release pancreatic juice (rich in bicarbonate to neutralize acid) and the liver to produce bile juice.

    • CCK (Cholecystokinin): Stimulated by fats and proteins, it prompts the gallbladder to release bile for fat digestion and the pancreas to secrete pancreatic juice with digestive enzymes.

    • GIP (Glucose-dependent Insulinotropic Peptide) and GLP-1 (Glucagon-like Peptide-1): Released in response to nutrients, they inhibit gastric activity (slowing digestion) and have metabolic effects like stimulating insulin release for glucose utilization.

  • Vagal Efferents:

    • Vagal nerve stimulation (largely via the enteric nervous system, ENS) enhances motility and secretion of bile and pancreatic juice. It amplifies the effects of secretin and CCK.

  • Organs Involved:

    • Liver: Produces bile juice.

    • Gallbladder: Stores and releases bile (triggered by CCK).

    • Pancreas: Secretes pancreatic juice (enzymes and bicarbonate) for digestion.

<p>In summary, the presence of food (acid, proteins, fats) and distension in the duodenum triggers a coordinated response via hormones (secretin, CCK, GIP, GLP-1) and vagal efferents to secrete bile and pancreatic juice, aiding digestion and glucose metabolism.</p><p></p><ul><li><p><strong>Stimuli in the Duodenum</strong>:</p><ul><li><p><strong>Acid, protein, and fats</strong> from the stomach enter the duodenum.</p></li><li><p><strong>Distension</strong> of the duodenum activates mechanoreceptors.</p></li></ul></li><li><p><strong>Hormonal Responses</strong>:</p><ul><li><p><strong>Secretin</strong>: Triggered by acid, it stimulates the pancreas to release pancreatic juice (rich in bicarbonate to neutralize acid) and the liver to produce bile juice.</p></li><li><p><strong>CCK (Cholecystokinin)</strong>: Stimulated by fats and proteins, it prompts the gallbladder to release bile for fat digestion and the pancreas to secrete pancreatic juice with digestive enzymes.</p></li><li><p><strong>GIP (Glucose-dependent Insulinotropic Peptide) and GLP-1 (Glucagon-like Peptide-1)</strong>: Released in response to nutrients, they inhibit gastric activity (slowing digestion) and have metabolic effects like stimulating insulin release for glucose utilization.</p></li></ul></li><li><p><strong>Vagal Efferents</strong>:</p><ul><li><p>Vagal nerve stimulation (largely via the enteric nervous system, ENS) enhances motility and secretion of bile and pancreatic juice. It amplifies the effects of secretin and CCK.</p></li></ul></li><li><p><strong>Organs Involved</strong>:</p><ul><li><p><strong>Liver</strong>: Produces bile juice.</p></li><li><p><strong>Gallbladder</strong>: Stores and releases bile (triggered by CCK).</p></li><li><p><strong>Pancreas</strong>: Secretes pancreatic juice (enzymes and bicarbonate) for digestion.</p></li></ul></li></ul><p></p>
29
New cards

How do gut hormones contribute to regulation of metabolism?

Released in response to digestion of food:

• GIP (from SI): → Stimulates insulin release (feedforward function to ensure prompt rise in circulating insulin when glucose, amino acids, etc are absorbed)

• GLP-1 (from ileum/colon) → Stimulates insulin release (feedforward function again) & inhibits glucagon release; promotes satiety

• CCK (from SI) promotes satiety: → release inhibited by digestion of food:

Release inhibited by digestion of food:

• Ghrelin (from stomach, and other parts of GI tract) → the ‘hunger hormone’ which promotes appetite and feeding behaviour

30
New cards

What is the main function of the colon and what secretions are made up at the colon and how does this work:

Colon: Absorption of water / Secretes key substances to maintain mucosal health and electrolyte balance.

Secretions that are made up of:

• Mucus (for lubrication) (Shields epithelium from mechanical damage and bacterial toxins.) ← Goblet cells (abundant in the colon).

• Secretion of HCO3- into the lumen (in exchange for Cl-) ← Cl⁻/HCO₃⁻ exchanger on luminal membrane.

• some secretion of K+

How does this work?

• These cells have a luminal Na channel

• Absorption of more Na+ than Cl leaves net negative potential in lumen

• This drives K+ movement into lumen, via paracellular pathway

<p>Colon: Absorption of water / Secretes key substances to maintain mucosal health and electrolyte balance.</p><p></p><p><u>Secretions that are made up of:</u></p><p>• Mucus (for lubrication) (Shields epithelium from mechanical damage and bacterial toxins.) ← <strong>Goblet cells</strong> (abundant in the colon).</p><p>• Secretion of HCO3- into the lumen (in exchange for Cl-) ← <strong>Cl⁻/HCO₃⁻ exchanger</strong> on luminal membrane.</p><p>• some secretion of K+</p><p></p><p><u>How does this work?</u></p><p>• These cells have a luminal Na channel</p><p>• Absorption of more Na+ than Cl leaves net negative potential in lumen</p><p>• This drives K+ movement into lumen, via paracellular pathway</p>
31
New cards

What are some consequences of dysfunction of GI secretions: Saliva, Gastric Secretions, Pancreatic secretions, Biliary Secretions

Saliva:

• Inadequate salivary production (‘dry mouth’) leading to difficulties in swallowing, enamel damage, and reduced microbiological protection

Gastric secretions:

Gastric atrophy – lack of intrinsic factor, leading to pernicious anaemia

• gastritis (e.g. due to H. pylori infection) - failure of mucosal barrier, and exposure to acid (not neutralisng the chyme properly) & proteases leads to gastric & duodenal ulcers

• excess acid production – leading to duodenal ulcers, Small Intestine malabsorption, diarrhoea (as water isn't be absorbed) etc

Pancreatic secretions:

• pancreatitis – leading to malabsorption because of inadequate production of digestive enzymes

• cystic fibrosis – reduced Cl- conductance reduces formation of pancreatic alkaline juice, and therefore reduces delivery of enzymes to duodenum

Biliary secretion:

• failure to make enough and/or to deliver it to duodenum – leads to malabsorption because of inadequate fat digestion