1/17
Rules and Definition
Name | Mastery | Learn | Test | Matching | Spaced | Call with Kai |
|---|
No study sessions yet.
f^{\prime}\left(x\right)
\lim_{h\to0}\frac{f\left(x+h\right)-f\left(x\right)}{h}
f^{\prime}\left(c\right)
\lim_{x\to c}\frac{f\left(x\right)-f\left(c\right)}{x-c}
Average Rate of Change
The slope over an interval
Instantaneous Rate of Change
The slope at a point (derivative)
Product Rule
f\cdot g^{\prime}+g\cdot f^{\prime}
Quotient Rule
\left(\frac{f}{g}\right)=\frac{g\cdot f^{\prime}-f\cdot g^{\prime}}{g^2}
\left(x^{n}\right)
nx^{\left(n-1\right)}
\left(e^{x}\right)
e^{x}
\left(\ln x\right)
\frac{1}{x}
\left(\sin x_{}\right)
\cos x
\left(\cos x\right)
-\sin x
\left(\tan x\right)
\sec^2x
\left(\csc x\right)
-\csc x\cot x
\left(\sec x\right)
\sec x\tan x
\left(\cot x\right)
-\csc^2x
x^{-n}
\frac{1}{x^{n}}
x^{\frac{m}{n}}
\sqrt[n]{x^{m}}
Equation
y-\left(f\left(x\right)\right)=x\left(derivative\right)\cdot\left(x-initial\right)