Investments - Formulas

0.0(0)
studied byStudied by 0 people
full-widthCall with Kai
GameKnowt Play
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/24

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

25 Terms

1
New cards

Expected return - E[r]

Excel: =SUMPRODUCT(p_range; r_range)

<p>Excel:<strong> <em>=SUMPRODUCT(p_range; r_range)</em></strong></p>
2
New cards

Variance - σ2

Excel: =SUMPRODUCT(p; r2) - (SUMPRODUCT(p; r))2

<p>Excel: <strong><em>=SUMPRODUCT(p; r<sup>2</sup>) - (SUMPRODUCT(p; r))<sup>2</sup></em></strong></p>
3
New cards

Standard deviation from variance - σ

=SQRT(variance_cell)

<p><strong><em>=SQRT(variance_cell)</em></strong></p>
4
New cards

Covariance

Excel: =COVARIANCE.S(rA_range; rM_range)

5
New cards

Correlation (sample, time series)

Excel: =CORREL(rA; rB)

<p>Excel: <code>=CORREL(rA; rB)</code></p>
6
New cards

Mean vs geometric mean

Arithmetic: =AVERAGE(r); Geometric for periodic simple returns: =PRODUCT(1+r)^(1/n)-1

7
New cards

Sharpe Ratio

Excel: =(E[r]-rf)/sigma

<p>Excel: <code>=(E[r]-rf)/sigma</code></p>
8
New cards

Implied rfr_frf​ from Sharpe and (μ, σ)

rf​ = μ − S σ

9
New cards

Normal VaR at 95% (returns)

Excel: =mu + NORM.S.INV(0.05)*sigma

<p>Excel: <code>=mu + NORM.S.INV(0.05)*sigma</code></p>
10
New cards

Normal ES at 95%

Excel: =mu - sigma*NORM.S.DIST(NORM.S.INV(0.05);FALSE)/0.05

<p>Excel: <code>=mu - sigma*NORM.S.DIST(NORM.S.INV(0.05);FALSE)/0.05</code></p>
11
New cards

Historical VaR at q

Excel: =PERCENTILE.EXC(r; q)

12
New cards

Interpreting VaR number

95% VaR of −12%: on a typical day you lose ≤ 12%; 5% chance you lose more

13
New cards

Interpreting ES number

Average loss conditional on being in worst 5% outcomes

14
New cards

Gordon with next dividend D1

knowt flashcard image
15
New cards

Gordon when given D0

knowt flashcard image
16
New cards

Multi-stage DDM — structure

PV of each stage’s dividends + terminal

<p>PV of each stage’s dividends + terminal</p>
17
New cards

Excel — PV of years 1–5 constant D1_5

=SUM(D1_5/(1+r)^{SEQUENCE(5)})

18
New cards

Terminal value at T with perpetual growth g

TVT = CF_{T+1}/(r-g)

19
New cards

Multi-stage DDM (years 1–5 = D15; 6–10 = D610; then g)

  • Stage 1 annuity PV: =PV(r; 5; D1_5; 0; 0)

  • Stage 2 annuity PV at t=5: =PV(r; 5; D6_10; 0; 0) then PV today: =PV(r; 5; 0; -that; 0)

  • TV at t=10: =D6_10*(1+g)/(r-g) then PV today: =PV(r; 10; 0; -TV; 0)

  • Fair price = sum of three PVs

20
New cards

DDM when given D0

D1 = D0*(1+g); P0 = D1/(r-g). Solve g: = (P0*r - D0)/(P0 + D0)

21
New cards

HPR with dividends and split

=(P1*Shares*Split + Shares*Div - Shares*P0)/(Shares*P0)

22
New cards
23
New cards
24
New cards
25
New cards