calc 2

5.0(1)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/44

flashcard set

Earn XP

Description and Tags

Calculus

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

45 Terms

1
New cards
∫0dx =
C
2
New cards
∫\[g(x) + h(x)\]dx =
G(x) + H(x) + C
3
New cards
∫xⁿdx =
1/n+1 \* x^(n+1) + C
4
New cards
∫e^xdx =
e^x + C
5
New cards
∫sin(x)dx =
\-cos(x) + C
6
New cards
∫sec²(x)dx =
tan(x) + C
7
New cards
∫sec(x)tan(x)dx =
sec(x) + C
8
New cards
∫⅟√(1-x²)dx =
arcsin(x) + C
9
New cards
∫kdx =
kx + C
10
New cards
∫kf(x)dx =
kF(x) + C
11
New cards
∫1/x dx =
ln(abs(x)) + C
12
New cards
∫a^x dx =
a^x / lna + C
13
New cards
∫cos(x)dx =
sin(x) + C
14
New cards
∫csc²(x)dx =
\-cot(x) + C
15
New cards
∫csc(x)cot(x)dx =
\-csc(x) + C
16
New cards
∫⅟(1+x²) dx =
arctan(x) + C
17
New cards
∫tan(x)dx =
ln(abs(sec(x))) + C
18
New cards
∫cot(x)dx =
ln(abs(sin(x))) + C
19
New cards
∫sec(x)dx =
ln(abs(secx + tanx)) + C
20
New cards
∫csc(x)dx =
ln(abs(cscx - cotx)) + C
21
New cards
∫ln(x)dx =
xlnx - x + C
22
New cards
substitution for √a²-x²
x = a\*sin(theta)
23
New cards
substitution for √a²+x²
x = a\*tan(theta)
24
New cards
substitution for √x²-a²
x = a\*sec(theta)
25
New cards
1-sin²x =
cos^2 (x)
26
New cards
1 + tan²x =
sec^2 (x)
27
New cards
sec²x - 1 =
tan^2 (x)
28
New cards
√a²+x² becomes
a\*sec(theta)
29
New cards
√x²-a² becomes
a\*tan(theta)
30
New cards
√a²-x² becomes
a\*cos(theta)
31
New cards
Integration by parts
integral(udv) = u\*v - integral(v\*du)
32
New cards
LIATE
Logarithm, Inverse trig, Algebraic, Trigonometric, Exponential
33
New cards
sin(2x) =
2sin(x)cos(x)
34
New cards
sin²x (power reduction) =
(1 - cos(2x))/2
35
New cards
cos²x (power reduction) =
(1 + cos(2x))/2
36
New cards
sinAcosB =
1/2(sin(A+B) + sin(A-B))
37
New cards
sinAsinB =
1/2(cos(A-B) - cos(A+B))
38
New cards
cosAcosB = \`
1/2(cos(A-B) + cos(A+B))
39
New cards
∫⅟(a²+x²) dx =
1/a \* arctan(x/a) + C
40
New cards
average value of f on \[a, b\]
1/(b-a) \* integral from a to b of \[f(x)dx\]
41
New cards
Arc length L of f(x) on \[a, b\]
L = ∫\[sqrt(1 + (dy/dx)^2) dx\] on \[a,b\]
42
New cards
Surface area in terms of x across the x-axis
SA = ∫\[2πf(x) \* sqrt(1 + (dy/dx)^2) dx\] on \[a,b\]
43
New cards
Surface area in terms of x across the y-axis
SA = integral from a to b of \[2 pi x \* sqrt(1 + (dy/dx)^2) dx\]
44
New cards
Surface area in terms of y across the x-axis
SA = integral from a to b of \[2 pi y \* sqrt(1 + (dx/dy)^2) dy\]
45
New cards
Surface area in terms of y across the y-axis
SA = integral from a to b of \[2 pi g(y) \* sqrt(1 + (dx/dy)^2) dy\]