1/15
Flashcards covering parent functions and transformation rules.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Linear Function
f(x) = x - A diagonal line.
Quadratic Function
f(x) = x^2 - A parabola.
Absolute Value Function
f(x) = |x| - A V-shape.
Cubic Function
f(x) = x^3 - An S-curve.
Square Root Function
f(x) = sqrt(x) - A half-curve.
Exponential Function
f(x) = b^x - Exhibits rapid growth or decay.
Logarithmic Function
f(x) = log_b(x) - The inverse of an exponential function.
Rational Function
f(x) = 1/x - Has two branches with asymptotes.
Vertical Shift
f(x) + k shifts the graph up, while f(x) - k shifts the graph down.
Horizontal Shift
f(x - h) shifts the graph right, while f(x + h) shifts the graph left.
Reflection over x-axis
-f(x) reflects the graph over the x-axis.
Reflection over y-axis
f(-x) reflects the graph over the y-axis.
Vertical Stretch/Compression
a*f(x) stretches the graph if |a| > 1 and compresses it if 0 < |a| < 1.
Horizontal Stretch/Compression
f(bx) compresses the graph if |b| > 1 and stretches it if 0 < |b| < 1.
Order of Transformations
Horizontal shift -> Stretch/compression/reflection -> Vertical shift.
Transformation of f(x) = |x| to g(x) = -2|x - 4| + 1
Reflect over the x-axis, stretch by 2, shift right 4 units, and shift up 1 unit.