BIO-249 Lecture Exam 6: Cell Signaling & Endocrine System

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/27

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

28 Terms

1
New cards

Gap Junction Definition

  • shortest distance signaling

  • Cells have to be RIGHT NEXT to each other

  • Chemicals, proteins, & signal molecules simply diffuse across them

<ul><li><p><mark data-color="yellow" style="background-color: yellow; color: inherit">shortest distance signaling</mark></p></li><li><p>Cells have to be RIGHT NEXT to each other</p></li><li><p>Chemicals, proteins, &amp; signal molecules simply diffuse across them</p></li></ul><p></p>
2
New cards

Contact Signaling Definition

  • using membrane proteins as a receptor AND ligand

  • the first membrane protein (ligand) binds to the receptor’s active site to create a response

<ul><li><p><strong><mark data-color="green" style="background-color: green; color: inherit">using membrane proteins as a receptor AND ligand</mark></strong></p></li><li><p>the <mark data-color="red" style="background-color: red; color: inherit">first membrane protein (ligand)</mark> <strong>binds</strong> to the<mark data-color="yellow" style="background-color: yellow; color: inherit"> receptor’s active site</mark> to create a response</p></li></ul><p></p>
3
New cards

Autocrine/Paracrine Signaling Definition

  • Similarities:

    1. SHORT DISTANCE

    2. BOTH secrete lots of signaling molecules that bind to receptors

    3. BOTH heavily rely on diffusion! which limits the signaling distance to the local level

  • Autocrine Signaling: cell sends signal to ITSELF

  • Paracrine Signaling: cell releases signal molecules to NEARBY cells

<ul><li><p><strong>Similarities</strong>:</p><ol><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">SHORT DISTANCE</mark></strong></p></li><li><p>BOTH secrete lots of signaling molecules that bind to receptors</p></li><li><p>BOTH heavily rely on diffusion! which limits the signaling distance to the local level</p></li></ol></li><li><p><strong><mark data-color="blue" style="background-color: blue; color: inherit">Autocrine Signaling</mark></strong>: cell sends signal to ITSELF</p></li><li><p><strong><mark data-color="green" style="background-color: green; color: inherit">Paracrine Signaling</mark></strong>: cell releases signal molecules to NEARBY cells</p></li></ul><p></p>
4
New cards

Hormone/Endocrine Signaling

LONG-DISTANCING signaling

  1. Endocrine Cell RELEASES chemical signal to the bloodstream

  2. Chemical signal in the bloodstream → hormone

  3. Hormone binds to the receptors on the target cells

    • Target cells NEED the receptor for the response, if they don’t have it

  4. Response is created

<p><strong><mark data-color="purple" style="background-color: purple; color: inherit">LONG-DISTANCING signaling</mark></strong></p><ol><li><p>Endocrine Cell RELEASES chemical signal to the bloodstream</p></li><li><p>Chemical signal in the bloodstream → <mark data-color="red" style="background-color: red; color: inherit">hormone</mark></p></li><li><p>Hormone binds to the receptors on the target cells</p><ul><li><p>Target cells NEED the receptor for the response, if they don’t have it</p></li></ul></li><li><p>Response is created</p></li></ol><p></p>
5
New cards

Neurotransmitter Signaling

LONG-DISTANCING SIGNALING

  1. Electrical signal reaches the axon terminal

  2. Axon terminal RELEASES neurotransmitters

  3. Neurotransmitters bind to receptors & send commands to the target cell (postsynaptic cell)

  4. Response is created

<p><strong><mark data-color="purple" style="background-color: purple; color: inherit">LONG-DISTANCING SIGNALING</mark></strong></p><ol><li><p><strong><mark data-color="yellow" style="background-color: yellow; color: inherit">Electrical</mark></strong><mark data-color="yellow" style="background-color: yellow; color: inherit"> signal</mark> reaches the axon terminal</p></li><li><p><mark data-color="green" style="background-color: green; color: inherit">Axon terminal</mark> RELEASES <mark data-color="blue" style="background-color: blue; color: inherit">neurotransmitters</mark></p></li><li><p><mark data-color="blue" style="background-color: blue; color: inherit">Neurotransmitters</mark> bind to receptors &amp; send commands to the target cell <mark data-color="red" style="background-color: red; color: inherit">(postsynaptic cell)</mark></p></li><li><p>Response is created</p></li></ol><p></p>
6
New cards

Neurohormone Signaling

  • LONG-DISTANCE Signaling

  1. Electrical signal travels down the neuron (neuro part)

  2. Axon terminal secretes neurotransmitter into the bloodstream (hormone part)

  3. Hormone goes down the bloodstream (acts like a hormone)

  4. Hormone interacts with the target cells

  5. Response is created

<ul><li><p><strong><mark data-color="purple" style="background-color: purple; color: inherit">LONG-DISTANCE Signaling</mark></strong></p></li></ul><ol><li><p>Electrical signal travels down the neuron <mark data-color="blue" style="background-color: blue; color: inherit">(neuro part)</mark></p></li><li><p>Axon terminal secretes neurotransmitter into the bloodstream <mark data-color="red" style="background-color: red; color: inherit">(hormone part)</mark></p></li><li><p>Hormone goes down the bloodstream <mark data-color="red" style="background-color: red; color: inherit">(acts like a hormone)</mark></p></li><li><p>Hormone interacts with the target cells</p></li><li><p>Response is created</p></li></ol><p></p>
7
New cards

Cell Communication Summary

  • SHORT DISTANCE

    1. Gap Junction

    2. Contact Signaling

    3. Autocrine

    4. Paracrine

  • LONG DISTANCE

    1. Endocrine/Hormone

    2. Nervous system Signaling

      1. Neurotransmitters

      2. Neurohormones

8
New cards
  1. What kind of responses can you expect to get from a chemical signal?

  2. What kind of cellular processes can chemical signals regulate?

Chemical Signal RESPONSES

  1. Enzyme activity: working more efficiently or shutting them off

  2. Membrane proteins

    • opening/closing them

  3. Gene Activity: creating new proteins

Cellular Processes Regulated

  1. Homeostasis

  2. Reproduction

  3. Growth

  4. Development

<p><strong><mark data-color="red" style="background-color: red; color: inherit">Chemical Signal RESPONSES</mark></strong></p><ol><li><p><strong>Enzyme activity</strong>: working more efficiently or shutting them off</p></li><li><p><strong>Membrane proteins</strong></p><ul><li><p>opening/closing them</p></li></ul></li><li><p><strong>Gene Activity</strong>: creating new proteins</p><p></p></li></ol><p><strong><mark data-color="green" style="background-color: green; color: inherit">Cellular Processes Regulated</mark></strong></p><ol><li><p>Homeostasis</p></li><li><p>Reproduction</p></li><li><p>Growth</p></li><li><p>Development</p></li></ol><p></p>
9
New cards

Describe the generalized signal pathway.

  • Given a signal molecule, what events occur from the time the signal binds with the receptor to the target cell’s response?

  1. Signal Molecule/Ligand binds to membrane receptor protein

    • signal molecule/ligand = first messenger (outside the cell)

  2. Ligand & receptor protein activate intracellular (within the cell) signal molecules

  3. Intracellular signal molecules alter target proteins

    • Intracellular signal molecules are the second messenger system

  4. Target proteins create a response

<ol><li><p><mark data-color="yellow" style="background-color: yellow; color: inherit">Signal Molecule/Ligand</mark> <strong>binds</strong> to membrane receptor protein</p><ul><li><p><mark data-color="yellow" style="background-color: yellow; color: inherit">signal molecule/ligand = first messenger (outside the cell)</mark></p></li></ul></li><li><p>Ligand &amp; receptor protein <strong>activate</strong> <mark data-color="red" style="background-color: red; color: inherit">intracellular (within the cell) signal molecules</mark></p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">Intracellular signal molecules</mark> <strong>alter</strong> target proteins</p><ul><li><p><mark data-color="red" style="background-color: red; color: inherit">Intracellular signal molecules are the </mark><strong><mark data-color="red" style="background-color: red; color: inherit">second messenger system</mark></strong></p></li></ul></li><li><p>Target proteins <strong>create</strong> a response</p></li></ol><p></p>
10
New cards

What are second messengers?

  • Intracellular (within the cell) signal molecules that alter target proteins

  • Quickly spread out throughout the cell via diffusion

11
New cards

Where are two places in the cell where can we find receptors for chemical signals?

  1. Extracellularly (on the cell membrane)

    • Signal molecules/ligands: proteins because they’re too big

  2. Intracellularly (inside the cell membrane)

    • Signal molecules/ligands: lipids because they can diffuse through the cell membrane

<ol><li><p><strong>Extracellularly </strong>(on the cell membrane)</p><ul><li><p><u>Signal molecules/ligands</u>: proteins because they’re too big</p></li></ul></li><li><p><strong>Intracellularly</strong> (inside the cell membrane)</p><ul><li><p><u>Signal molecules/ligands</u>: <mark data-color="yellow" style="background-color: yellow; color: inherit">lipids</mark> because they can diffuse through the cell membrane</p></li></ul></li></ol><p></p>
12
New cards

What are the two chemically different groups of hormones in the human body? Describe the characteristics of each group. Note: see the table in the lecture slides.

knowt flashcard image
13
New cards

How do hydrophilic hormones trigger a cell response?

  • Where are the receptors?

  • How do the receptors lead to a response?

  1. Peptide hormone (first messenger) binds to the receptor on the cell membrane

  2. G protein system activates

  3. Second messenger is created

  4. Second messenger changes protein activity

<img src="https://knowt-user-attachments.s3.amazonaws.com/962cb23a-5c4a-48ac-ba20-57ed85d79ff1.jpg" data-width="100%" data-align="center" alt=""><img src="https://knowt-user-attachments.s3.amazonaws.com/97aa7ff5-d012-4234-95c1-7113317009ab.jpg" data-width="100%" data-align="center" alt=""><img src="https://knowt-user-attachments.s3.amazonaws.com/7ae33161-acbd-4b4e-873e-77f9a7e57a20.jpg" data-width="100%" data-align="center" alt=""><ol><li><p><mark data-color="purple" style="background-color: purple; color: inherit">Peptide hormone</mark> (first messenger) binds to the receptor on the cell membrane</p></li><li><p>G protein system activates</p></li><li><p>Second messenger is created</p></li><li><p>Second messenger changes protein activity</p></li></ol><p></p>
14
New cards

How do hydrophobic hormones trigger a cell response?

  • Where are the receptors?

  • How do the receptors lead to a response?

  1. Steroid hormone diffuses straight into the cell & binds to the intracellular receptor

  2. Transduction occurs & gene expression starts or is altered

  3. Transcription of DNA occurs, creating mRNA

  4. Translation of mRNA creates protein, which leads to the alteration of cellular structure & activity

<ol><li><p><mark data-color="yellow" style="background-color: yellow; color: inherit">Steroid hormone</mark> diffuses straight into the cell &amp; binds to the <mark data-color="yellow" style="background-color: yellow; color: inherit">intracellular</mark> receptor</p></li><li><p>Transduction occurs &amp; gene expression starts or is altered</p></li><li><p>Transcription of DNA occurs, creating mRNA</p></li><li><p>Translation of mRNA creates protein, which leads to the alteration of cellular structure &amp; activity</p></li></ol><img src="https://knowt-user-attachments.s3.amazonaws.com/7451de2a-ca6b-4631-a15d-4e0362afacc6.jpg" data-width="100%" data-align="center" alt=""><p></p>
15
New cards

For hormone feedback loops, where is the receptor?

Receptor in endocrine eclls

  1. Membrane protein receptors

  2. Intracellular receptors

16
New cards

What is an efferent pathway, and what is it typically in a hormone feedback loop?

  • Efferent Pathway: how the control center relays info to the effectors using hormones

  • Hormone Feedback Loop Process

    1. Stimulus:

      1. humoral (blood)

      2. neural (nervous system)

      3. Hormonal (endocrine)

    2. Receptor (on/in the endocrine cells)

      1. Membrane Protein Receptors ON the cell membrane

      2. Intracellular Receptors IN the cell

    3. Control Center: endocrine cells

    4. Efferent Pathway: hormones TRAVELING via the bloodstream

    5. Effector: other cells and/or organs

    6. Response: Long-term changes in cells

<ul><li><p><strong>Efferent Pathway</strong>: how the control center relays info to the effectors using hormones</p></li></ul><ul><li><p><strong>Hormone Feedback Loop Process</strong></p><ol><li><p><strong>Stimulus</strong>: </p><ol><li><p>humoral (blood)</p></li><li><p>neural (nervous system)</p></li><li><p>Hormonal (endocrine)</p></li></ol></li><li><p><strong>Receptor (on/in the endocrine cells)</strong></p><ol><li><p>Membrane Protein Receptors ON the cell membrane</p></li><li><p>Intracellular Receptors IN the cell</p></li></ol></li><li><p><strong>Control Center</strong>: endocrine cells</p></li><li><p><strong>Efferent Pathway</strong>: hormones TRAVELING via the bloodstream</p></li><li><p><strong>Effector</strong>: other cells and/or organs</p></li><li><p><strong>Response</strong>: Long-term changes in cells</p></li></ol></li></ul><p></p>
17
New cards

Describe how blood sugar (e.g., glucose plasma concentration) is regulated with insulin

  1. Stimulus: Humoral- increase in blood sugar

  2. Receptor: receptor in beta cells of pancreas

  3. Control Center: Beta cells

    • signal pathway response: secrete insulin

  4. Efferent Pathway: Insulin (secreted into the bloodstream)

  5. Effectors

    • Liver

    • Other Cells

  6. Response

    1. Liver: Glycogenesis, creating glycogen from glucose

    2. Other cells: intake of glucose

    3. Overall: decrease in blood sugar

<ol><li><p><strong>Stimulus: Humoral</strong>- increase in blood sugar</p></li><li><p><strong>Receptor</strong>: receptor in beta cells of pancreas</p></li><li><p><strong>Control Center</strong>: Beta cells</p><ul><li><p>signal pathway response: secrete insulin</p></li></ul></li><li><p><strong>Efferent Pathway</strong>: Insulin (secreted into the bloodstream)</p></li><li><p><strong>Effectors</strong></p><ul><li><p><strong>Liver</strong></p></li><li><p><strong>Other Cells</strong></p></li></ul></li><li><p><strong>Response</strong></p><ol><li><p><strong>Liver</strong>: Glycogenesis, creating glycogen from glucose</p></li><li><p><strong>Other cells</strong>: intake of glucose</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Overall: decrease in blood sugar</mark></strong></p></li></ol></li></ol><p></p>
18
New cards

Describe how blood sugar (e.g., glucose plasma concentration) is regulated with the glucagon hormone

  1. Stimulus: Humoral: decrease in blood sugar

  2. Receptor: receptor in the alpha cells of the pancreas

  3. Control Center: alpha cells

    • singal pathway response: secrete glucagon hormone

  4. Efferent Pathway: Glucagon (travels via bloodstream)

  5. Effector: Liver

  6. Response

    • Liver: glycogenolysis, INCREASE in blood sugar

<ol><li><p><strong>Stimulus</strong>: <strong>Humoral</strong>: decrease in blood sugar</p></li><li><p><strong>Receptor</strong>: receptor in the alpha cells of the pancreas</p></li><li><p><strong>Control Center</strong>: alpha cells</p><ul><li><p>singal pathway response: secrete glucagon hormone</p></li></ul></li><li><p><strong>Efferent Pathway</strong>: Glucagon (travels via bloodstream)</p></li><li><p><strong>Effector</strong>: Liver</p></li><li><p><strong>Response</strong></p><ul><li><p><strong>Liver:</strong> glycogenolysis, INCREASE in blood sugar</p></li></ul></li></ol><p></p>
19
New cards

Insulin Issues

  • What will happen to plasma glucose levels if beta cells can’t make insulin?

  • What will happen to plasma glucose levels if other cells don’t respond to insulin?

Blood sugar remains high for both questions

<p>Blood sugar remains high for both questions</p>
20
New cards

What is the vital function of Thyroxine?

  1. Affects most cells in the body

  2. Support development

  3. Increase metabolic rate

<ol><li><p>Affects most cells in the body</p></li><li><p>Support development</p></li><li><p>Increase metabolic rate</p></li></ol><p></p>
21
New cards

Describe how the hypothalamus and anterior pituitary gland regulate thyroid hormone (a.k.a. Thyroxine). Make sure you include the following hormones: thyrotropin-releasing hormone (TRH), Thyroid-stimulating hormone (TSH).

  1. Hypothalamus secretes thyrotropin-releasing hormone (TRH)

    • flows through the portal system until it reaches the Anterior pituitary gland

  2. TRH will interact with the cells in the anterior pituitary gland → anterior pituitary gland secretes thyroid-stimulating hormone (TSH)

  3. TSH flows OUT into the bloodstream & reaches the thyroid gland

  4. The thyroid gland makes thyroxine (thyroid hormone- TH)

<ol><li><p><strong>Hypothalamus</strong> secretes <mark data-color="yellow" style="background-color: yellow; color: inherit">thyrotropin-releasing hormone (TRH)</mark></p><ul><li><p>flows through the portal system until it reaches the Anterior pituitary gland</p></li></ul></li><li><p><mark data-color="yellow" style="background-color: yellow; color: inherit">TRH</mark> will interact with the cells in the <strong>anterior pituitary gland</strong> → anterior pituitary gland secretes <mark data-color="red" style="background-color: red; color: inherit">thyroid-stimulating hormone (TSH)</mark> </p></li><li><p>TSH flows OUT into the bloodstream &amp; reaches the thyroid gland</p></li><li><p>The <strong>thyroid gland</strong> makes <mark data-color="green" style="background-color: green; color: inherit">thyroxine (thyroid hormone- TH) </mark></p></li></ol><p></p>
22
New cards

How does iodine deficiency creat Goiters (an enlarged thyroid)?

See pic!!

<p>See pic!!</p>
23
New cards

Be comfortable with the Thyroxine feedback loop to describe the effects of changing various feedback loop components.

  1. Thyroid hormone (thyroxine) goes BACK to the hypothalamus & anterior pitutiary gland

  2. TOO MUCH thyroxine inhibits the secretion of TRH at the hypothalamus & TSH at the anterior pituitary gland

  3. TRH and TSH production decrease

  4. Thyroxine production decreases

<ol><li><p><mark data-color="red" style="background-color: red; color: inherit">Thyroid hormone (thyroxine</mark>) goes BACK to the <mark data-color="purple" style="background-color: purple; color: inherit">hypothalamus</mark> &amp; anterior pitutiary gland</p></li><li><p>TOO MUCH thyroxine inhibits the secretion of <mark data-color="purple" style="background-color: purple; color: inherit">TRH at the hypothalamus</mark> &amp; <mark data-color="yellow" style="background-color: yellow; color: inherit">TSH at the anterior pituitary gland</mark></p></li><li><p><mark data-color="purple" style="background-color: purple; color: inherit">TRH</mark> and <mark data-color="yellow" style="background-color: yellow; color: inherit">TSH</mark> production decrease</p></li><li><p><mark data-color="red" style="background-color: red; color: inherit">Thyroxine</mark> production decreases</p></li></ol><p></p>
24
New cards

What happens when you add “exogeneous” testosterone?

Decrease body production of testosterone (see pic!)

<p>Decrease body production of testosterone (see pic!)</p>
25
New cards

Antagonistic Hormone Interaction

  • Antagonistic: hormone responses are OPPOSITE of one another

  • increase insulin concentration, decrease glucagon concentration

<ul><li><p><strong>Antagonistic</strong>: hormone responses are OPPOSITE of one another</p></li><li><p>increase insulin concentration, decrease glucagon concentration</p></li></ul><p></p>
26
New cards

Permissive Hormone Interaction

  • Hormone A (thyroid hormone) gives “permission” to hormone B (sex hormone) to function

  • Sex hormones work by themselves, but work BETTER in the presence of thyroid hormone

<ul><li><p>Hormone A (thyroid hormone) gives “permission” to hormone B (sex hormone) to function</p></li><li><p>Sex hormones work by themselves, but work BETTER in the presence of thyroid hormone </p></li></ul><p></p>
27
New cards

Syngeristic Hormone Interaction

  • When multiple hormones come together, they can amplify their effect

  • These common hormones have a common RESPONSE/EFFEt, they all do the same thing (they don’t give each other permission)

<ul><li><p>When multiple hormones come together, they can amplify their effect</p></li><li><p>These common hormones have a common RESPONSE/EFFEt, they all do the same thing (they don’t give each other permission)</p></li></ul><p></p>
28
New cards

What are the 3 hormone interactions?

  1. Antagonistic

  2. Permissive

  3. Synergistic