1/148
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Automatic thinking
An unconscious way of thinking
Controlled thinking
deliberate, active thinking, considering alternate explanations
Bounded rationality
the brain doesn't always make the best decision, heuristics and other things can influence our ability to decide
4 Criteria of Decision Making
Based on current assets
Based on possible consequences
Evaluated according to probability theory
Adaptive within the constrains of the probabilities and valued of the possible consequences
4 Ways People Make Decisions
By habit
By conformity
By culture
By authority
Probability theory
Choice is evaluated based on the expected value
Expected value equation
Probability*Value
Normative
how people should make decisions
Descriptive
how people actually make decisions
Perceived probability
People tend to OVERVALUE small probability events and UNDERVALUE high probability events
Sunk Cost effect
Taking past investments in a decision alternative into account, even when they should not affect decisions about the future
Example of sunk-cost effect
Suppose you have just spent $200 on a non-refundable ski lift ticket for the day. Once you arrive at the lift, the weather turns bad, so skiing will be very unpleasant. What do you do: stay and ski anyway in miserable conditions, or just give up the $200, and go home, where you will find more enjoyable activities? Why would you decide as you do?
Overinclusive thinking
Considering extraneous information while making a decision
Incomplete thinking
People tend to not consider all options and potential outcomes of those options
Example of Incomplete Thinking
Jurors who form an early impression that a defendant is innocent usually only evaluate the consequences of handing down an innocent world
Expected utility
How much the gamble is worth to the decision maker
Expected Value
How much the gamble will pay
Decision Trees
Consider all possible decisions and all possible outcomes
Squares are decisions to be made
Circles represent different possible outcomes
Rationality of Considering only the Future
If you only consider the satisfaction of the future, you will choose the option that gives you the most enjoyment going forward.
The Lens Model
We make decisions about underlying criteria based on multiple cues.
(Weight)(Attribute) + (Weight)(Attribute) + (Weight)*(Attribute)
Linear Models
Decisions are made on scores from a criteria. An example would be TSA screening. Workers will observe any suspicious passengers if they reach 4+ points, they will be inspected. If they reach 6+ points, they will be referred to by law enforcment.
Ellsberg Paradox
Suppose you have an urn containing 30 red balls and 60 other balls that are either black or yellow. You don't know how many black or yellow balls there are, but that total number of black plus yellow is 60.
Choose:
A: Receive $100 if you draw a red ball
B: Receive $100 if you draw a black ball
Choose:
C: Receive $100 if you draw a red or yellow ball
D: Receive $100 if you draw a black or yellow ball
Heuristics
Quick and dirty mental shortcuts
Availability heuristic
People estimate the likelihood of an event based on how easily similar memories can be recalled
Overgeneralization
People tend to overgeneralize a particular to the whole: One bad cop means all cops are bad
Biased sampling from memory
Biased sampling from memory
Easier recall increases your estimate of the frequency
"_ _ _ E " vs. "_ _ _ _ E D"
Pink garbage truckBiased sampling from memory
Availability to the imagination
"In a room with 10 people, how many different groups of 2 can be formed?"
"How many different groups of 8 can be formed?"
The answer for both is 45, but we tend to think that there is more groups of 2 because two is a smaller number
Subadditivity
The actual probability of all events is less than the sum of estimated probabilities
Example of subadditivity
Physicians are presented a patient case and asked to estimate the probability of each of the following outcomes:
Patient dies while at the hospital
Discharged alive but dies within a year
Lives more than 1 year but less than 10 years
Lives more than 10 years
The average summed probability was 164%
Superadditivity
The probability of all events is greater than the sum of estimated probabilities of all possible events
Example of superadditivity
What is the probability of each of the following, given that the birthrate in Myanmar is not equal to that of Thailand:
Birth rate in Myanmar is greater than in Thailand
Birth rate in Myanmar is less than in Thai
Average response for each option averaged from 0.42 to 0.47, doesn't add up to 100%
Anchoring
People make an initial estimate of a situation, and base new estimates on this original estimated, given new information
Under Adjustment
People tend to stay close to the anchor and fail to sufficiently adjust based on new information
Example of underadjustment
Spin a "wheel of fortune" with numbers between 1% and 100% then ask participants whether the percentage of African nations were UN members in 1972 is greater or less than this percent
People who spun "10%" estimated 25%. People who spun "65%" estimated 45%.
Certainty equivalent
If I offer you a choice between a gamble of $1000 with a probability of 70%, or I offer you a value of "X" with 100% certainty, what is the minimum value that X would be to choose X over the gamble?
As X increases, people increasingly choose X
Preference Reversal
People will change their preference depending on how the options are presented, people will undervalue EV and make decisions based on probability
Judgment by similarity
Subjects are told that a man is unsociable, disinterested in politics, and devoted to working on his boat in his spare time. How likely is it that he is:
An engineer?
A lawyer?
What if they are told that he was selected from a group that was:
70% lawyers and 30% engineers?
30% lawyers and 70% engineers?
Result: Subjects judged that he was an engineer, regardless of whether scenario A or B was presented
People ignore the base rates
Similarity heuristic
Category membership judgments are often based on similarity to known categories
Contrast Model
We tend to judge similarity of an instance to a category by looking for matches or mismatches between attributes of an instance and attributes of a category
If we know someone is famous, a good public speaker, and deceptive, we will assume he is a politician
Stereotypes are an example of this.
Bayes' Rule
How we can take both similarity and probability into account
P(A|B) = P(B|A)P(A)/P(B)
Conjunction probability error
Cognitive bias that occurs when people overestimate the likelihood of two events happening at the same time. This is statistically illogical because the probability of two things happening at the same time cannot be greater than the probability of one of the events happening on its own
Story Model
Evidence accumulation through story construction
Representation of the decision alternatives by learning verdict category attributes
Reaching a decision through classification of the story into the best fitting verdict category
How the jurors construct the story determines their verdict:
Coverage - does it account for all the evidence?
Coherence - no internal contradictions, story makes sense
Uniqueness - is it the only story that fits?
Judging by scenarios
Narrative stories include not just actual narratives of what happened, but also narratives of what WOULD have happened if other conditions had occurred
Example of judging by scenarios
A woman works in a mall in a high crime area, and gets assaulted after work.
Story 1: If there had been more guards, she would not have been assaulted
Story 2: If there had been more guards, she would have been assaulted anyway because the crime rate is so hate
Create a story of what WOULD have happened if things were different
Illusion of Control
The perception that one can control events that are entirely up to chance
Endowment effect
People are willing to pay less money to buy an object than they would demand in payment to sell the same object
The hot hand fallacy
The perception that one who is winning is likely to continue winning, even when the events are random.
Example of the hot hand fallacy
Does a basketball player have a better chance of making his next shot after making the last 2 or 3?
91% said yes
The Gambler's Fallacy
The false perception that the outcome of a current random events is dependent on the outcomes of preceding random events
A random event is more likely to occur because it has not happened for a period of time
Texas sharpshooter fallacy
A rifleman shoots a bunch of holes in the side of a barn. He draws a target around the cluster and says he's a good shot
Correcting for multiple comparisons
If there are 10 different diseases, and the probability that a town has more than a certain threshold number of any one of them is 0.05, then what is the probability that there will be an above-threshold number of one or more diseases?
1-p(none) = (1-0.95^10) = 40%
Disjunction
In a situation in which events have the same probability, this is the case in which one or more of the events happens.
The disjunctive probability fallacy
People tend to underestimate the probability of a disjunction
Opposite of the conjuction fallacy
Regression to the mean
The probability of some great event happening twice is lower than a less great event happening after that
Example of regression to the mean
Sons of tall fathers tend to be taller than other people, but shorter than their fathers
The two envelope problem
Suppose you and a friend are given an envelope. Each envelope has some money in it, and one envelope has exactly twice as much money as the other. You are each allowed to open your envelope and look inside to see how much money there is, but neither of you is allowed to tell the other how much money is in the envelope. You are given the option of exchanging envelopes once or keeping the original. Do you exchange or do you keep?
Probability Theory: 0.52x + 0.51/2x = 1.25x
Probability Theory: 0.52x + 0.51/2x = 1.25x
By switching, you expect on average to increase your gain, but the other person should want to switch envelopes for exactly the same reason!
Should you continue switching envelopes indefinitely?
The monty hall problem
Game Show: 3 doors: behind one door is a new car, and behind the other two doors are goats. You choose one door at random. After you state your choice, Monty opens one of the other two doors that you DIDN'T pick to reveal a goat. The door monty opens always has a goat behind it, then you get to switch.
If you pick door #1, then the combined probability that the car is behind doors two or 3 is ⅔
If Monty opens door 3, then the combined probability of ⅔ falls all on door two.
Probabilities:
Door 1: ⅓
Door 2: ⅔
Door 3: 0
Evaluation heuristics
Good things satiate and bad things escalate
Duration neglect
People are insensitive to the duration of an unpleasant experience
Diversification bias
people underestimate how similar desires will be on different occasions
Students ask to choose in advance a snack that they will get in 3 weeks
Later, students wished they had chosen a cookie for each week
Non-regressive prediction
People tend to overestimate how good they will feel about good consequences and overestimate how bad they will feel about bad consequences
Bounded self-control
People overestimate their ability to resist their own visceral desires in future situations (people plan to avoid drug use but do it when they get the opportunity)
Emotion
This factor allows quick and dirty responses that allow a response before we have the details of what we are responding to
Delay discounting
People tend to discount the future value of something
Example of delay discounting
$500 right now or $1000 in a year
Future value needs to be a certain amount larger than the immediate reward
V = 1/(1+kT)
Iowa gambling task
Players sample from any one of 4 card decks
Decks A and B have higher rewards but also have higher punishments (average loss)
Decks C and D have lower rewards but smaller losses (gain on average)
Individuals with brain damage similar to Phineas Gage consistently picked A and B, while normal individuals learn to choose C and D.
Certain areas of the brain activate to warn you of making a bad decision
Somatic marker hypothesis
Individuals experience a negative or unpleasant physiological response when contemplating certain potential choices
Cognition → Physiological response → Decision making
Weber's law
The Just Noticeable Difference between two stimuli is proportional to the intensity of the actual stimuli
A 100 watt bulb vs. a 2 watt bulb has the same difference than a 50 watt bulb and a 1 watt bulb.
Fechner's Law
A corollary of Weber's law: the physiological intensity is the logarithm of the physical intensity
The more money you have, the less value $100 has
Value
The quality of a thing by which its worth is estimate, the fair pricing of something
Personal value
Subjective value to the person making a decision
Framing effect
All options have the same EV, but the first is framed as a loss, the second is framed as a gain, so people tend to be more risk averse in gains and risk-seeking in losses.
Percent that prefers sure thing in gains MINUS percent that prefers sure thing in losses
Suppose you receive $400 and are given a choice between two options:
Give back $100
50% chance of giving back $200
Suppose you receive $200 and are given a choice between two options:
Receive $100 for sure
50% chance of receiving $200 more
Asian Disease Problem
The US is preparing for an outbreak of an unusual Asian disease that is expected to kill 600 people. Two alternatives are proposed: