MMET 207 Exam III

5.0(1)
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/95

flashcard set

Earn XP

Description and Tags

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

96 Terms

1
New cards
Factors affecting corrosion
Materials properties and environment
2
New cards
Material properties
The chemistry
Redox potential
Passivity
Metallurgical factors: when an anodic area is formed
3
New cards
Redox Potential
In material props
Is corrosion thermodynamically favorable- how easily with which a molecule accepts electrons
4
New cards
Passivity
In material props
Formation of a protective film
5
New cards
Metallurgical factors in material props- what affects when anodic areas are formed
Chemical segregation
Presence of multiple phases
Inclusions
Cold Work
Nonuniform stresses
6
New cards
Environment
Understanding the environment is a necessary 1st step in corrosion control
Chem nature, operating conditions in environment, polarization
7
New cards
Operating conditions in environment
intended service life
temp
velocity of corrodent
concentration of solution
aeration
impurities in solution
8
New cards
Chem nature in environment
acids
bases
salts
gasses
solvents
9
New cards
Polarization in environment
the change in corrosion potential with the change in corrosion current
10
New cards
Uniform corrosion
all the surface is exposed to corrodent
material choice and removal of electrolyte can be preventive
11
New cards
Pitting
Local corrosion damage
Use the available data on corrosion to avoid using metals in environments susceptible to pitting. For example, stainless steel should not be used in salt water.
12
New cards
Crevice corrosion
local attack in a crevice
prevented through good gasketing
13
New cards
galvanic corrosion
when 2 dissimilar metals are electrically connected
use galvanic series in material selection
14
New cards
Stress corrosion cracking
spontaneous corrosion-induced cracking of material under static stress (environmentally assisted cracking)
15
New cards
Intergranular attack
Localized
Preferential corrosion at the grain boundaries
16
New cards
Dealloying
1 element in the alloy is preferentially removed
17
New cards
Types of Erosion
Liquid Erosion
Liquid impact
slurry erosion
cavitation erosion
18
New cards
Liquid Impact
Protective film removal
Can be combined with mechanical material removal
19
New cards
Liquid Erosion
Similar to impact erosion but fluid is parallel to the surface
20
New cards
Slurry Erosion
Combined action of corrosion and wear leads to material removal
The same mechanisms as impact erosion, but abrasive particles enhance it.
Ceramic or elastomer coatings can be helpful
21
New cards
Cavitation corrosion/erosion
Formed when the operational pressure is dropped below the vapor pressure of the fluid, causing the formation of gas bubbles that collapse at an increased velocity on the surface of the material, inducing initial cavitation
22
New cards
Determination of corrosion characteristic
Corrosion data: use data available (National Association of Corrosion Engineers)
Corrodent Chem, corrodent concentration, temp, aeration, state of stress
Standardized lab experiments
23
New cards
Standarized tests to determine corrosion characteristics
General corrosion; samples are weighed before/after immersion in a particular corrodent
Galvanic attack- corrosion potential and corrosion current can be measured
Crevice- severe attack will occur under band if metal is susceptible to this
Stress corrosion cracking- cracks will occur on tension side of U bend if metal is susceptible to this
Liquid erosion- effect of velocity on the corrosion rate of metals is determined by weight loss
24
New cards
Factors used to control corrosion
Material selection
environment
design
Cathodic/anodic protection
25
New cards
Material selection
Coating(ie painting metallic coating-anodic to substrate); should be thick and pinhole free-anodic metallic coatings are not sensitive to pinholes; good for atmospheric corrosion but not chemicals
Diffusion treatment: chromizing, nitriding
Heat Treatment: stainless steels after welding becomes sensitized, heat treatment and subsequent quenching addresses it
Surface finish: rough surfaces exp faster corrosion rates
26
New cards
Environmental control
Temp
Velocity
pH: dissolved gasses
Cleaning: prevents buildups that lead to crevice or concentration corrosion
Inhibitors: alter environment; removing O2, absorptive inhibitors slow down the anodic/cathodic rxns by stablishing a passive film
27
New cards
Design in corrosion control
a)Prevent base metal dilution
b)Gasket shouldn't stick out in crevice control
Cleanability to avoid residue corrodent
c)Provide proper drainage
d)Prevent corrodent/solutions from drying and concentrating
e)Provide for inspection; corrosion monitoring
f)prevent galvanic couples- use insulating materials to prevent galvanic corrosion
g)Avoid incomplete weld penetration--> aeration, concentration of electrolyte, and crevice corrosion
h)Avoid water accumulation in outdoor construction
i)Use wear plates to minimize corrosive wear- prevent impingement from fluids
28
New cards
Cathodic protection
Use electrochemical reaction in your favor
Used in soil or in vessels
uses the principle of galvanic corrosion by reversing the flow of current between two dissimilar metals, especially since this type of corrosion is when coupling an active metal with a more noble metal resulting in current to flow and corrosion occurring on the active metal
29
New cards
Anodic protection
Use electrochemical reaction in your favor
More complex than cathodic protection
involves the surface being protected as the anode whereas cathodic protection involves making the metal surface the cathode of an electrochemical cell to control corrosion
the potential of the object is controlled by suppressing the reactivity of the metal so that it stays passive.
30
New cards
SS general props
Resist corrosion, even at high T
More than 11% Cr (more Cr, better corrosion resistance)
not well suited for reducing environments (e.g. sulfuric acid).
Manufacturing __ is challenging because Cr reacts with oxygen and carbon, so special processes are
used:
Adding ferrochromium to low carbon steel scrap
Use electric furnaces
Ladle treatments
Argon-oxygen decarburization (AOD)
All Expensive
oForm a passive layer in oxidizing environment
31
New cards
5 Metallurgic microstructures of SS
Different alloying elements change the range
of stability of phases.
Ni, C, and N extend the austenite region
Ferritic
Martensitic
Austenitic
Precipitated hardened (PH)
Duplex
32
New cards
Ferritic SS
BCC
Low carbon (
33
New cards
Martensitic SS
BCT(Not a cube)
12-18% Cr
Up to 1.2% C
Alloying elements: same as Ferritic Fe, Cr, C
Carbon expands the gamma loop which makes quench
hardening possible
Chromium carbide is present in the structure
Poor weldability and notch sensitivity
Magnetic
Lowest impact strength
NOT resistant to stress corrosion crack
App: Structural, cutting tools
34
New cards
Austenitic SS
More complex in nature and they have at least 4 alloying elements: Fe, Cr (16-26%), C- lowest, Ni- austenizer(at least 8%, up to 24%)
Quench is needed to maintain the FCC(metastable phase)
By cold work, this metastable austenite is transformed to martensite →very work hardenable.
Nonmagnetic
High weldability
Highest impact strength
App: chemical resistance, creep resistance, tanks, piping
35
New cards
PH alloys
Different types:
Martensitic
Semiaustenitic
Austenitic
• Low carbon
• Ni and Cr have specific ratios
• Al, Ti, and Cu form precipitates
• Needs special heat treatment
36
New cards
Duplex alloys
Si, Mo, V, Al, Nb, Ti, and W promote ferrite formation(general knowledge)
Ni, Co, Mg, Cu, C, and N promote austenite formation
Using different compositions we can form austenite and ferrite next to each other
Compared to all austenite SS: Higher yield strength, Improved welding, Improved stress corrosion
Not immune to stress corrosion and in some environments, ferrite is attacked more severely.
37
New cards
Identification of SS
AISI: three-digit system, the first letter shows the composition type:
200: Cr, Ni, Mg(aus)
300: Cr, Ni(aus)
400: Cr(ferritic/martensitic)
UNS: SXXX00
ASTM standard is based on application: ASTM A 313 covers wires
38
New cards
Ex of Aus SS
301 can esp be cold worked
303, 304, 316 less C
304L, 316L extra low C; used when sensitization is important
high creep R--> load must be carried in furnaces/highT
> 9% Ni--> less work harden
39
New cards
Ex of Martensitic SS
410, 420(both turbine parts), 440C(used for tools)
higher strength, wear resistant
40
New cards
Ex of ferritic SS
430
lower in cost, household appliances
good oxidation R, used in furnaces(don't transform to other phases like other SS)
41
New cards
Types of Cast iron
Gray
malleable
white
ductile
42
New cards
Phys props of SS- Density
similar to other iron-based alloyw
43
New cards
Phys props of SS- Structure
affects mechanical properties and magnetism
44
New cards
Phys props of SS- Conductivity
low electrical (one sixth of carbon steels) and thermal conductivity (less than half of carbon
steels)
45
New cards
Phys props of SS- expansion
austenitic alloys can have 50% larger thermal expansion. Can be problematic in bimetal strips.
Other structures are similar to carbon steels.
46
New cards
Phys props of SS- modulus of Elasticity
slightly lower than carbon and alloy steels for the same section size SS has more elastic deformation
47
New cards
mech props of SS
used in large structures- vessels, valves, pumps
value strength, toughness, high T strength, and formability
Where higher strength or wear resistance is needed, martensitic 420 and 440C are used.
Nickel above 9% decreases work hardenability in aus
Ferritic SS is used in furnaces where the load must be carried(no phase change)
48
New cards
Types of fabrication
Forming
machining
pickling and passivation
welding
heat treatment
49
New cards
Forming
reshaping of metals while still in the solid state; creates structural parts/components out of metal sheets or tubing
Austenitic SS has high ductility--> no fracture in huge deformations
Ferritic SS as a group are not as formable as carbon steels
In spite of that, cold forming is common
50
New cards
Machining
raw material is cut into a desired final shape and size ; subtractive process
If not modified, much lower machinability compared to B1112
Ferritics are gummy
Austenitics tend to cold work
Consider types 430F, 416, and 303 when heavy machining is needed
51
New cards
Pickling and passivation
to achieve the maximum corrosion resistance a uniform passive film is needed. Therefore, contaminations should be removed.
Pickling removes tightly adhering oxides (produced from welding, heat treatment, ...)
Sulfuric or nitric-hydrofluoric acid is used
For passivation nitric acid, phosphoric acid or citric acid is used. The process removes iron contaminations.
Safety is important- hazardous; Environmental effects
52
New cards
Welding
Avoid welding on martensitics: formation of hardened martensite and cracking are the problems
In ferritics 1. grain growth, 2. HAF can have lower impact resistance, and 3. Sigma phase might be formed
Austenitics are weldable, but sensitization is still a problem
53
New cards
Sensitization
Precipitation/formation of chromium carbides at the grain boundaries of austenitic stainless steel after welding leads to depletion of Cr at the grain boundaries--> corrosion at grain boundaries
54
New cards
Heat Treatment
Ferritics do not quench hardening. The only useful heat treatment on them is annealing (remove stress)
For austenitics, when annealing at high temperatures happens, quenching is needed to prevent sensitization
Low-temperature carburizing for austenitics is possible (case of 50 microns). Good when wear resistance is
expected from them.
55
New cards
Sulfur and selenium
lower corrosion resistance (but easier machining)
56
New cards
Cb (Nb), Ta and Ti
prevent sensitization
57
New cards
Mo
reduce pitting
58
New cards
Corrosion limitations
Prone to pitting
Best in oxidizing environments
Susceptible to crevice corrosion
Prone to attack in chloride and reducing acids (bleach solution, sea water, other Cl water)
Some prone to stress corrosion cracking
Susceptible to intergranular corrosion when sensitized
Susceptible to galvanic corrosion between grains
59
New cards
atmospheric corrosion
All classes are excellent in this environment
60
New cards
Sulfuric and nitric acids
concentration and T matters. 316 is good for low and high concentrations of __ acid, 430 is good for __ acid
61
New cards
Phosphoric acid
most grades are good at room T in this environment
62
New cards
Organic solvents
all grades are good in this environment
63
New cards
Gasoline
304 and 316 are excellent in this environment
64
New cards
Chloride service
__ lead to pitting, crevice and stress crack corrosion
65
New cards
Neutral H2O
most grades are good in this environment
66
New cards
Bleaches
all types are attacked in this environment
67
New cards
Gray cast iron
general purpose
Alloying elements: Fe, C, Si
graphite flakes in pearlite or ferrite matrix
weak & brittle in tension
stronger in compression
excellent vibrational dampening
wear resistant
Ex: Class 20
68
New cards
All strengths
Quality of finish for machined surfaces
Resistance to wear
Modulus of elasticity
As increase from 20 to 60, the following increase in gray cast iron naming system
69
New cards
The ability to dampen vibration
Resistance to thermal shock
Machinability
Castability
As increase from 20 to 60, the following decrease in gray cast iron naming system
70
New cards
Ductile cast iron
add Mg and/or Ce--> Fe, C, Si, Mg, Ce
graphite nodules in pearlite or ferrite matrix
matrix often pearlite – stronger but less ductile
Numbering system for Ductile Cast Iron:
(Grade number and properties, Minimum Tensile strength in ksi, Minimum Yield strength in ksi, % elongation)
Ex: Grade 5(60-40-18)
71
New cards
White cast iron
0.5 - 2 wt% Si
pearlite + cementite
very hard and brittle due to Fe3C; wear resistant
The fracture surface is white
No naming system
72
New cards
Malleable cast iron
Graphite rosettes in pearlite or ferrite matrix
heat treat white iron at 800-900°C
reasonably strong and ductile
Numbering:
ASTM 47 with a 5-digit number
Ex: 32510: Minimum yield strength – 325, % elongation – 10
73
New cards
Al phys props
Low density →one third the weight of steel
Good thermal and electrical conductivity
High strength-to-weight ratio
High reflectivity
Good corrosion resistance (passive layer)
Not magnetic
74
New cards
Fabrication of Al
Easy to cast and machine
Most alloys are weldable
Can be given a hard surface by anodizing and hard Coating
Ductile--> less possible of forming cracks
75
New cards
From bauxite(Al ore), alumina (aluminum oxide,
Al2O3) is extracted
Alumina is dissolved in cryolite
Alumina is reduced at the anode
Aluminum is denser than the molten salt and is collected at the bottom of the cell
How to extract Al
76
New cards
Wrought Al #ing system
4-digit number for aluminum series
1000 series – last two digits indicate purity beyond 99% Ex. 1025 – 99.25% pure Al
Other series – numbers only represent different specific alloys
Suffix indicating heat treatment or degree cold work
77
New cards
1000 series of Al
commercially pure- 99% pure or higher
used in electrical and chemical fields
excellent corrosion resistance
high thermal and electrical conductivity
low mechanical properties and excellent workability
moderate increases in strength from strain hardening
iron and silicon major impurities
78
New cards
2000 series in Al
Copper – principal alloying element
Heat treatable - require solution heat treatment to obtain best properties
In heat treated condition, mechanical properties close to or even exceed mild steel
May require artificial aging
Do not have as good corrosion resistance as most other Al alloys
Often clad with 6000 series or pure Al
2024 best known alloy
79
New cards
6000 series in Al
Silicon and Magnesium – major alloying elements
Forms magnesium silicide
Heat treatable
Less strong than 2000 or 7000 series
Good formability
Good corrosion resistance
Medium strength
6061 – most widely used and versatile Al alloy
80
New cards
7000 series in Al
Zinc – major alloying element
Heat treatable
High strength
Used for highly stressed parts and aircraft applications
Not arc welded well – resistance welded
81
New cards
8000 series in Al
Other than Cu, Mn, Si, Mg, Mg and Si, Sn
82
New cards
Precipitation Hardening
4th way to strengthen metals including cold work, reducing grain size, and alloying
Accelerate aging process by cooling quickly from alpha to alpha + CuAl2 and then raising T to below alpha phase
83
New cards
2000, 6000, 7000
Which Al series are heat-treatable?
84
New cards
1000, 3000, 4000, 5000
Which Al series are nonheat-treatable?
85
New cards
Cold work wrought Al numbering system
-H1X Strain hardened only
-H2X Strain hardened and partially annealed
-H3X Strain Hardened and stabilized (Mg)
-H4X Strain hardened and lacquered or painted
where X represents the degree of coldworking
86
New cards
Heat treat suffixes
T3 Furnace solution heat treated, quenched and cold worked
T4 Furnace solution heat treated, quenched, and naturally aged
T6 Furnace solution heat treated, quenched and furnace aged
87
New cards
Indoors: Very corrosion resistant, low corrosion rate
Outdoors: 1. Corrosion rate depends on humidity and chemicals on the atmosphere (e.g presence of salt). 2. Faster corrosion rate in the first two years, then a uniform oxide layer is formed.
How does Al perform in atmospheric corrosion
88
New cards
Chemistry (heavy ions such as copper, lead, Ni) and pH are important.
sea water causes pitting.
Detergents lead to heavy attack.
Cathodic protection or coatings to prevent or reduce
How does Al perform in water corrosion
89
New cards
resistant to nitric acid, ammonia, organic solvents (alcohol, acetone, ...)
How does Al perform in chemical corrosion
90
New cards
Due to the low corrosion rate and high affinity to O2- quickly develops a film of Al oxide
In general, why does pure Al have the best corrosion resistance
91
New cards
Anodizing Al
• Converting aluminum to alumina
oHas 2 types, clear coat (or conventional) and hardcoating
oEnhances corrosion resistance
oEnhances wear resistance (hard coating)
• Coating grows perpendicular to the surface
• Corners should be radiused.
• Coating has pores. The pores can be sealed by immersing them in hot water. Dye can also be added to the hot water.
anodizing changes the dimensions
92
New cards
Clear coat or conventional in anodizing
Less surface thickness converted, not as much size growth
Can be colorized with dye
Provides some wear resistance and increased corrosion resistance
93
New cards
hardcoating in anodizing Al
More surface thickness converted, more size growth
Turns dark gray, does not color well
Primarily for wear, and corrosion resistance
94
New cards
The galvanic series rank metals and alloys based on their nobility, or how cathodic or anodic they are.
The electrolyte used in ranking metals in galvanic series is sea water.
If 2 metals are connected in a structure, using galvanic series we can determine which one is going to
be sacrificed and which one is going to be saved. This can be used to protect structures using cathodic
protection.
What information does galvanic series provide? How can that be used in selecting metals in a design?
95
New cards
Oxidation(loses e-)
Fe --> Fe+2+2e-
96
New cards
Reduction(gains e-)
Cu+2+2e- --> Cu