1/58
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
lim x→∞ex
∞.
lim x→∞e−x
0
lim x→∞xa
∞ (for any a > 0).
lim x→∞√x
∞ since √x = x^(1/2) which corresponds to a = 1/2 > 0.
lim x→∞1/xa
0 (for any a > 0).
lim x→∞ln(x)
∞.
lim x→∞arctan(x)
π/2.
lim x→−∞arctan(x)
−π/2.
lim x→∞sin(x)
doesn't exist.
lim x→−∞sin(x)
doesn't exist.
lim x→∞cos(x)
doesn't exist.
lim x→−∞cos(x)
doesn't exist.
lim x→0+1/xa
∞ (for a > 0).
lim x→0+ln(x)
−∞.
d/dxf(x) ± g(x)
f ′(x) ± g′(x) (Sum and Difference Rules).
d/dxf(x)g(x)
f ′(x)g(x) + f(x)g′(x) (Product rule).
d/dx f(x)/g(x)
f ′(x)g(x) − f(x)g′(x) / (g(x))^2 (Quotient Rule).
d/dxf(g(x))
f ′(g(x))g′(x) (Chain Rule).
d/dxc
0 for any constant c.
d/dxex
ex.
d/dxxn
nxn−1.
d/dxln(x)
1/x.
d/dxsin(x)
cos(x).
d/dxcos(x)
−sin(x).
d/dxarctan(x)
1/(1 + x^2).
d/dxarcsin(x)
1/√(1 − x^2).
d/dxax
ax ln(a).
d/dxtan(x)
sec^2(x).
d/dxsec(x)
sec(x) tan(x).
∫x^ndx
1/(n + 1)x^(n+1) + C if n ≠ −1.
∫exdx
ex + C.
∫1/xdx
ln(|x|) + C.
∫sin(x)dx
−cos(x) + C.
∫cos(x)dx
sin(x) + C.
∫sec^2(x)dx
tan(x) + C.
∫sec(x)tan(x)dx
sec(x) + C.
∫tan(x)dx
ln(|sec(x)|) + C.
∫sec(x)dx
ln(|sec(x) + tan(x)|) + C.
∫1/(1 + x^2)dx
arctan(x) + C.
∫1/√(1 − x^2)dx
arcsin(x) + C.
sin^2(ω) + cos^2(ω)
1
sin(2ω)
2 sin(ω) cos(ω).
sec^2(ω)
1 + tan^2(ω).
tan(ω)
sin(ω)/cos(ω).
sec(ω)
1/cos(ω).
csc(ω)
1/sin(ω).
cot(ω)
cos(ω)/sin(ω).
tan(ω) in a right triangle
opposite side over adjacent side.
sin(ω) in a right triangle
opposite side over hypotenuse.
cos(ω) in a right triangle
adjacent side over hypotenuse.
sin^2(ω)
1-cos^2(ω) or 1-cos(2ω)/2
cos^2(ω)
1-sin^2(ω) or 1+cos(2ω)/2
sinαcosβ
=1/2[sin(α−β)+sin(α+β)]
sinαsinβ
1/2[cos(α−β)−cos(α+β)]
cosαcosβ
1/2[cos(α−β)+cos(α+β)]
sin(ω)cos(ω)
sin(2ω)/2
trig integrals: ∫sin^m*cos^n
- m odd: extract a sin, convert the rest to cos, u sub cos
- n odd: extract a cos, convert the rest to sin, u sub sin
- neither is odd: half angle or double angle formulas
trig integrals: ∫sec^m*tan^n
- m even, >2: extract 2 sec, convert rest to tan, u sub tan = sec^2
- n odd, there are some sec: extract one of each, conv. tan -> sec, u sub sec = sectan
- else rewrite into sin, cos.... tan = sin/cos, cot = cos/sin
trig substitution cases
sqrt(a²-x²) → x = a sin(θ)
sqrt(a²+x²) → x = a tan(θ)
sqrt(x²-a²) → x = a sec(θ)