 Call Kai
Call Kai Learn
Learn Practice Test
Practice Test Spaced Repetition
Spaced Repetition Match
Match1/48
Note that any variable that is capitalized is a vector
| Name | Mastery | Learn | Test | Matching | Spaced | 
|---|
No study sessions yet.
Arclength for R(t)=(f(t), g(t), h(t))
s\left(t\right)=\int_{a}^{b}\!\sqrt{\left(f^{\prime}\left(t\right)\right)^2+\left(g^{\prime}\left(t\right)\right)^2+\left(h^{\prime}\left(t\right)\right)^2}\,dt
Arclength Parameterization for R(t)=(f(t), g(t), h(t))
s\left(t\right)=\int_{a}^{t}\!\sqrt{\left(f^{\prime}\left(u\right)\right)^2+\left(g^{\prime}\left(u\right)\right)^2+\left(h^{\prime}\left(u\right)\right)^2}\,du
3 Dimensional Curvature
K=\frac{\left\Vert T^{\prime}\left(t\right)\right\Vert}{\left\Vert R^{\prime}\left(t\right)\right\Vert}=\frac{\left\Vert R^{\prime\prime}\left(t\right)\times R^{\prime}\left(t\right)\right\Vert}{\left\Vert R^{\prime}\left(t\right)\right\Vert^3}
2 Dimensional Curve
C=\frac{\left\vert y^{\prime\prime}\left(x\right)\right\vert}{\left(1+\left\vert y^{\prime}\left(x\right)\right\vert^2\right)^{\frac32}}
Principal Normal Vector
N\left(t\right)=\frac{T^{\prime}\left(t\right)}{\left\vert T^{\prime}\left(t\right)\right\vert}
Unit Binormal Vector
B\left(t\right)=T\left(t\right)\times N\left(t\right)
Position of R(t)
R\left(t\right)=\int V\left(t\right)dt=\iint A\left(t\right)dtdt
Velocity of R(t)
V\left(t\right)=R^{\prime}\left(t\right)=\int A\left(t\right)dt
Acceleration of R(t)
A\left(t\right)=V^{\prime}\left(t\right)=R^{\prime\prime}\left(t\right)
Speed of R(t)
Speed=\left\vert V\left(t\right)\right\vert=\left\vert R^{\prime}\left(t\right)\right\vert
Level Curves
f\left(x,y\right)=c
Vertical Traces (shows yz plane)
f\left(a,y\right)=c
Horizontal Traces (shows xz plane)
f\left(x,b\right)=c
Level Surface
w\left(x,y,z\right)=c
Multivariable Limit Conditions (The limit exists if…)
All potential paths lead to the same existing point
\lim_{\left(x,b\right)\rightarrow\left(a,b\right)}f\left(x,y\right)=\lim_{\left(a,y\right)\rightarrow\left(a,b\right)}f\left(x,y\right)
Tangent Plane Equation
z=f\left(x_0,y_0\right)+f_{x}\left(x_0,y_0\right)\left(x-x_0)+f_{y}\left(x_0,y_0\right)\left(y-y_0\right)\right)
N=\left(j\times f_{y}\left(x_0,y_0\right)k\right)\times\left(i\times f_{x}\left(x_0,y_0\right)k\right)
Linear Approximation Equation
z=f\left(x_0,y_0\right)+f_{x}\left(x_0,y_0\right)\left(x-x_0)+f_{y}\left(x_0,y_0\right)\left(y-y_0\right)\right)
Chain Rule
\frac{dz}{dt}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial t}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial t},z=f\left(x\left(t\right),y\left(t\right)\right)
Implicit Differentiation for f(x,y) and y=g(x)
\frac{dy}{dx}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}},\frac{dz}{dx}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}
Directional Derivatives
D_{u}=\nabla f\left(x,y\right)\cdot\begin{pmatrix}\cos\left(\theta\right)\\ \sin\left(\theta\right)\end{pmatrix}=\nabla f\left(x,y\right)\cdot\frac{V}{||V||}=\left\Vert\nabla f\left(x,y\right)\right\Vert\cdot\cos\left(\theta\right)=\nabla f\left(x,y\right)\cdot U=\nabla f\left(x,y\right)\cdot\begin{pmatrix}u_{x}\\ u_{y}\\ u_{z}\end{pmatrix}
Critical Point
\nabla f(x,y)=0
Types of Extrema (Absolute Extrema is only at boundaries and critical points)
D=f_{xx}\left(x_0,y_0\right)f_{yy}\left(x_0,y_0\right)-\left(f_{xx}\left(x_0,y_0\right)\right)^2
If D>0 & fxx>0, it’s a minimum
If D>0 & fxx<0, it’s a maximum
If D<0, it’s a saddle point
If D=0 it fails
2 Dimensional Lagrange Multiples
\begin{pmatrix}\nabla f\left(x_0,y_0\right)\\ g\left(x_0,y_0\right)\end{pmatrix}=\begin{pmatrix}\lambda\nabla g\left(x_0,y_0\right)\\ 0\end{pmatrix}
3 Dimensional Lagrange Multiples
\begin{pmatrix}\nabla f\left(x_0,y_0\right)\\ g\left(x_0,y_0\right)\\ h\left(x_0,y_0\right)\end{pmatrix}=\begin{pmatrix}\lambda_1\nabla g\left(x_0,y_0\right)+\lambda_2\nabla h\left(x_0,y_0\right)\\ 0\\ 0\end{pmatrix}
Type 1 Double Integral (Vertically Simple)
\iint f\left(x,y\right)dA=\int_{a}^{b}\int_{g_1\left(x\right)}^{g_2\left(x\right)}f\left(x,y\right)dydx
Type 2 Double Integral (Horizontally Simple)
\iint f\left(x,y\right)dA=\int_{c}^{d}\int_{h_1\left(y\right)}^{h_2\left(y\right)}f\left(x,y\right)dxdy
Polar Double Integrals
\iint f\left(x,y\right)dA=\int_{\alpha}^{\beta}\int_{h_1\left(\theta\right)}^{h_2\left(\theta\right)}f\left(r,\theta\right)rdrd\theta
Cartesian Triple Integrals (Could be rewritten for any integration order)
\int_{a}^{b}\int_{v_1\left(x\right)}^{v_2\left(x\right)}\int_{u_1\left(x,y\right)}^{u_2\left(x,y\right)}f\left(x,y,z\right)dzdydx
Cylindrical Triple Integrals (Could be rewritten for any integration order)
\int_{\alpha}^{\beta}\int_{v_1\left(\theta\right)}^{v_2\left(\theta\right)}\int_{u_1\left(r,\theta\right)}^{u_2\left(r,\theta\right)}f\left(r,\theta,z\right)rdzdrd\theta
Spherical Triple Integrals (Could be rewritten for any integration order)
\int_{\psi}^{\delta}\int_{v_1\left(\varphi\right)}^{v_2\left(\varphi\right)}\int_{u_1\left(\theta,\varphi\right)}^{u_2\left(\theta,\varphi\right)}f\left(\rho,\theta,\varphi\right)\rho^2\sin\left(\varphi\right)d\rho d\theta d\varphi
2 Dimensional Total Mass
m=\iint_{R}\rho\left(x,y\right)dA
3 Dimensional Total Mass
m=\iiint_{Q}\rho\left(x,y\right)dV
Moment About the X-Axis
M_{x}=\iint_{R}\rho\left(x,y\right)ydA
Moment About the Y-Axis
M_{y}=\iint_{R}\rho\left(x,y\right)xdA
2 Dimensional Center of Mass
\overline{x}=\frac{M_{y}}{m},\overline{y}=\frac{Mx}{m}_{}
2 Dimensional X-Axis Moment of Inertia
I_{x}=\iint_{R}\rho\left(x,y\right)y^2dA
2 Dimensional Y-Axis Moment of Inertia
I_{y}=\iint_{R}\rho\left(x,y\right)x^2dA
2 Dimensional Polar Moment of Inertia
I=I_{x}+I_{y}
Moment About the XY-Plane
M_{xy}=\iiint_{Q}\rho\left(x,y\right)zdV
Moment About the YZ-Plane
M_{yz}=\iiint_{Q}\rho\left(x,y\right)xdV
Moment About the XZ-Plane
M_{xz}=\iiint_{Q}\rho\left(x,y\right)ydV
3 Dimensional Center of Mass
\overline{x}=\frac{M_{yz}}{m},\overline{y}=\frac{M_{xz}}{m},\overline{z}=\frac{M_{xy}}{m}_{}
3 Dimensional X-Axis Moment of Inertia
I_{x}=\iiint_{Q}\left(y^2+z^2\right)\rho\left(x,y\right)dV
3 Dimensional Y-Axis Moment of Inertia
I_{y}=\iiint_{Q}\left(x^2+z^2\right)\rho\left(x,y\right)dV
3 Dimensional Z-Axis Moment of Inertia
I_{z}=\iiint_{Q}\left(x^2+y^2\right)\rho\left(x,y\right)dV
Change in Variable
\left(x,y\right)=T\left(u,v\right)=\left(g\left(u,v\right),h\left(u,v\right)\right)
Jacobian
J=\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}=\begin{pmatrix}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{pmatrix}
Change in Variable in Multiple Integration
\iint_{R}f\left(x,y\right)dA=\iint_{S}f\left(u,v\right)\left\vert J\right\vert dudv