bstat exam 3

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/47

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

48 Terms

1
New cards

Central Limit Theorem for means

For n ≥ 30, sampling distribution of X̄ is approximately normal regardless of population distribution.

2
New cards

CLT for proportions requirement

np ≥ 5 and n(1-p) ≥ 5

3
New cards

Standard error of sample mean

σ/√n - measures how much sample means vary from population mean.

4
New cards

Standard error of sample proportion

√[p(1-p)/n] - measures how much sample proportions vary.

5
New cards

Sampling error

Natural random variation because we sample instead of surveying everyone.

6
New cards

Non-sampling error

Human mistakes, poor design, measurement problems, bias.

7
New cards

Selection bias

Systematic tendency for some groups to be over/under-represented in sample.

8
New cards

Nonresponse bias

Systematic difference between respondents and non-respondents.

9
New cards

Response bias

Systematic pattern of inaccurate answers (social desirability, leading questions).

10
New cards

Simple Random Sample (SRS)

Every possible sample of size n has equal chance of selection.

11
New cards

Stratified sampling

Divide population into homogeneous groups, then take SRS from each group.

12
New cards

Cluster sampling

Divide population into heterogeneous clusters, randomly select clusters, sample all within chosen clusters.

13
New cards

Unbiased estimator

E(θ̂) = θ - expected value equals population parameter.

14
New cards

Consistent estimator

Gets closer to true parameter as n → ∞ (both unbiased and variance → 0).

15
New cards

Relative efficiency

Among unbiased estimators, prefer one with smaller variance.

16
New cards

Z-test for means formula

z = (X̄ - μ₀)/(σ/√n).

17
New cards

Sample mean in z-test formula

X̄ in z-test formula.

18
New cards

Hypothesized population mean under null hypothesis

μ₀ in z-test formula.

19
New cards

Known population standard deviation

σ in z-test formula.

20
New cards

Sample size in z-test formula

n in z-test formula.

21
New cards

Square root of sample size

√n in denominator affects standard error.

22
New cards

T-test for means formula

t = (X̄ - μ₀)/(s/√n).

23
New cards

Sample standard deviation in t-test formula

s in t-test formula (used when population σ unknown).

24
New cards

Degrees of freedom in t-test

df in t-test = n - 1.

25
New cards

Z-test for proportions formula

z = (p̂ - p₀)/√[p₀(1-p₀)/n].

26
New cards

Alternative hypothesis (Hₐ)

Research hypothesis, effect exists, difference

27
New cards

Type I error (α)

Rejecting H₀ when it's actually true (false positive)

28
New cards

Type II error (β)

Failing to reject H₀ when it's actually false (false negative)

29
New cards

Power of test

1 - β = probability of correctly rejecting false null hypothesis

30
New cards

p-value definition

Probability of obtaining results as extreme as observed, assuming H₀ is true

31
New cards

Rejection rule

Reject H₀ when p-value < α (significance level)

32
New cards

Statistical significance

Result unlikely due to chance alone (p-value < α)

33
New cards

Practical significance

Result is large enough to be important in real world

34
New cards

One-tailed test

Tests for direction (Hₐ: μ > μ₀ or Hₐ: μ < μ₀)

35
New cards

Two-tailed test

Tests for difference (Hₐ: μ ≠ μ₀)

36
New cards

α = 0.05

Standard significance level - 5% chance of Type I error

37
New cards

α = 0.10

Less strict significance level

38
New cards

α = 0.01

More strict significance level

39
New cards

Z-test vs t-test choice

Z if σ known; t if σ unknown (almost always t-test in practice)

40
New cards

When normal assumption crucial

When n < 30 - for large samples, CLT applies regardless of population shape

41
New cards

Relationship: CI and two-tailed test

If CI contains μ₀ → fail to reject H₀; if excludes → reject H₀

42
New cards

One-tailed vs CI mismatch

CI always two-tailed, so may disagree with one-tailed test conclusion

43
New cards

Test statistic interpretation

How many standard errors sample result is from null value

44
New cards

Large test statistic

Evidence against H₀ (sample result far from null value)

45
New cards

Small p-value

Strong evidence against H₀ (result unlikely if H₀ true)

46
New cards

Large p-value

Weak evidence against H₀ (result likely even if H₀ true)

47
New cards

Fail to reject H₀ conclusion

"Evidence does not support" the alternative hypothesis

48
New cards

Reject H₀ conclusion

"Evidence supports" the alternative hypothesis