1/142
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
"Identity of +":
0 + a = a
"Identity of ·":
1 · a = a
"Distributivity of · over +":
a · (b + c) = a · b + a · c
"Zero of ·":
a · 0 = 0
"Unary minus":
a + - a = 0
"Subtraction":
a - b = a + - b
"Self-inverse of unary minus":
- (- a) = a
"Fixpoint of unary minus":
- 0 = 0
"Distributivity of unary minus over +":
- (a + b) = - a + - b
Theorem (15.20):
- a = - 1 · a
"Right-identity of -":
a - 0 = a
"ex falso quodlibet":
false ⇒ p ≡ true
"Contrapositive":
p ⇒ q ≡ ¬ q ⇒ ¬ p
"Shunting":
p ⇒ (q ⇒ r) ≡ p ∧ q ⇒ r
"Reflexivity of ⇒":
p ⇒ p
"`true` is greatest element":
p ⇒ true
"Definition of ≡":
(p ≡ q) = (p = q)
"Identity of ≡":
true ≡ (q ≡ q)
"Reflexivity of ≡":
p ≡ p
"Definition of `false`":
false ≡ ¬ true
"Commutativity of ¬ with ≡":
¬ (p ≡ q) ≡ (¬ p ≡ q)
"¬ connection":
(¬ p ≡ q) ≡ (p ≡ ¬ q)
"Double negation":
¬ (¬ p) ≡ p
"Negation of `false`":
¬ false ≡ true
"Definition of ≢":
(p ≢ q) ≡ ¬ (p ≡ q)
"Definition of ¬ from ≡":
¬ p ≡ (p ≡ false)
"Mutual associativity of ≡ with ≢":
((p ≢ q) ≡ r) ≡ (p ≢ (q ≡ r))
"Idempotency of ∨":
p ∨ p ≡ p
"Distributivity of ∨ over ≡":
p ∨ (q ≡ r) ≡ (p ∨ q ≡ p ∨ r)
"Excluded Middle" "LEM":
p ∨ ¬ p
"Zero of ∨":
p ∨ true ≡ true
"Identity of ∨":
p ∨ false ≡ p
"Distributivity of ∨ over ∨":
p ∨ (q ∨ r) ≡ (p ∨ q) ∨ (p ∨ r)
"Golden rule":
p ∧ q ≡ (p ≡ (q ≡ p ∨ q))
"Idempotency of ∧":
p ∧ p ≡ p
"Identity of ∧":
p ∧ true ≡ p
"Zero of ∧":
p ∧ false ≡ false
"Distributivity of ∧ over ∧":
p ∧ (q ∧ r) ≡ (p ∧ q) ∧ (p ∧ r)
"Contradiction":
p ∧ ¬ p ≡ false
(3.43a) "Absorption":
p ∧ (p ∨ q) ≡ p
(3.43b) "Absorption":
p ∨ (p ∧ q) ≡ p
(3.44a) "Absorption":
p ∧ (¬ p ∨ q) ≡ p ∧ q
(3.44b) "Absorption":
p ∨ (¬ p ∧ q) ≡ p ∨ q
(3.44c) "Absorption":
¬ p ∧ (p ∨ q) ≡ ¬ p ∧ q
(3.44d) "Absorption":
¬ p ∨ (p ∧ q) ≡ ¬ p ∨ q
"Distributivity of ∨ over ∧":
p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)
"Distributivity of ∧ over ∨":
p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)
(3.47a) "De Morgan":
¬ (p ∧ q) ≡ ¬ p ∨ ¬ q
(3.47b) "De Morgan":
¬ (p ∨ q) ≡ ¬ p ∧ ¬ q
Theorem (3.48):
p ∧ q ≡ (p ∧ ¬ q ≡ ¬ p)
"Semi-distributivity of ∧ over ≡":
p ∧ (q ≡ r) ≡ (p ∧ q ≡ (p ∧ r ≡ p))
Theorem (3.50) "Strong modus monens for ≡":
p ∧ (q ≡ p) ≡ p ∧ q
"Replacement":
(p ≡ q) ∧ (r ≡ p) ≡ (p ≡ q) ∧ (r ≡ q)
"Definition of ⇒ via ∨":
p ⇒ q ≡ (p ∨ q ≡ q)
"Definition of ⇐" "Consequence":
p ⇐ q ≡ q ⇒ p
"Material implication":
p ⇒ q ≡ ¬ p ∨ q
"Definition of ⇒ via ∧":
p ⇒ q ≡ (p ∧ q ≡ p)
"¬-connection for ⇒":
p ⇒ ¬ q ≡ q ⇒ ¬ p
"¬-connection for ⇒":
¬ p ⇒ q ≡ ¬ q ⇒ p
Theorem (3.62):
p ⇒ (q ≡ r) ≡ (p ∧ q ≡ p ∧ r)
"Distributivity of ⇒ over ≡":
p ⇒ (q ≡ r) ≡ (p ⇒ q ≡ p ⇒ r)
"Self-distributivity of ⇒":
p ⇒ (q ⇒ r) ≡ (p ⇒ q) ⇒ (p ⇒ r)
Theorem (3.66) "Strong modus ponens": p ∧ (p ⇒ q) ≡ p ∧ q
p ∧ (p ⇒ q) ≡ p ∧ q
Theorem (3.67):
p ∧ (q ⇒ p) ≡ p
Theorem (3.68):
p ∨ (p ⇒ q) ≡ true
Theorem (3.69):
p ∨ (q ⇒ p) ≡ q ⇒ p
Theorem (3.70):
p ∨ q ⇒ p ∧ q ≡ (p ≡ q)
"Right-zero of ⇒":
p ⇒ true
"Left-identity of ⇒":
true ⇒ p ≡ p
"Definition of ¬ from ⇒" (3.74):
p ⇒ false ≡ ¬ p
"Weakening" "Strengthening":
p ⇒ p ∨ q
"Weakening" "Strengthening":
p ∧ q ⇒ p
"Weakening" "Strengthening":
p ∧ q ⇒ p ∨ q
"Weakening" "Strengthening":
p ∨ (q ∧ r) ⇒ p ∨ q
"Weakening" "Strengthening":
p ∧ q ⇒ p ∧ (q ∨ r)
"Modus ponens":
p ∧ (p ⇒ q) ⇒ q
"Mutual implication":
(p ⇒ q) ∧ (q ⇒ p) ≡ (p ≡ q)
"Antisymmetry of ⇒":
(p ⇒ q) ∧ (q ⇒ p) ⇒ (p ≡ q)
"Definition of · for 0":
0 · n = 0
"Definition of · for `suc`":
suc m · n = n + m · n
"Left-identity of ·":
1 · n = n
"Right-zero of ·":
m · 0 = 0
"Multiplying the successor":
m · suc n = m + m · n
"Distributivity of · over +":
(k + m) · n = k · n + m · n
"Subtraction from zero":
0 - n = 0
"Subtraction of zero from successor":
suc m - 0 = suc m
"Subtraction of successor from successor":
suc m - suc n = m - n
"Right-identity of subtraction":
m - 0 = m
"Self-cancellation of subtraction":
m - m = 0
"Subtraction after addition":
(m + n) - n = m
"Subtraction from multiplication with successor":
m · suc n - m = m · n
"Subtraction of sum":
k - (m + n) = (k - m) - n
"Distributivity of · over subtraction":
k · (m - n) = k · m - k · n
Axiom (3.83) "Leibniz":
e = f ⇒ E[z ≔ e] = E[z ≔ f]
(3.84a) "Replacement":
e = f ∧ E[z ≔ e] ≡ e = f ∧ E[z ≔ f]
(3.84b) "Replacement":
e = f ⇒ E[z ≔ e] ≡ e = f ⇒ E[z ≔ f]
"Zero is not successor":
0 = suc n ≡ false
"Cancellation of `suc`":
suc m = suc n ≡ m = n
"Cancellation of +":
k + m = k + n ≡ m = n
"Zero sum":
0 = a + b ≡ 0 = a ∧ 0 = b