1/30
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
DMS to Decimal Conversion
Degrees + (Minutes/60) + (Seconds/3600)
SOH-CAH-TOA
Mnemonic for Right Triangle Definitions: Sinθ = Opp/Hyp, Cosθ = Adj/Hyp, Tanθ = Opp/Adj
Cscθ
Hyp/Opp (Reciprocal of Sine)
Secθ
Hyp/Adj (Reciprocal of Cosine)
Cotθ
Adj/Opp (Reciprocal of Tangent)
Pythagorean Identity 1
sin²θ + cos²θ = 1
Pythagorean Identity 2
1 + tan²θ = sec²θ
Pythagorean Identity 3
1 + cot²θ = csc²θ
Mnemonic for Pythagorean Identities
"Silly Cats Try Tricks"
Sin(A±B)
sinAcosB ± cosAsinB
Cos(A±B)
cosAcosB ∓ sinAsinB
Tan(A±B)
(tanA ± tanB)/(1 ∓ tanAtanB)
Mnemonic for Sum & Difference Formulas
"Sine same, cosine change"
Sin(2θ)
2sinθcosθ
Cos(2θ)
cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ
Tan(2θ)
2tanθ/(1 - tan²θ)
Sin(θ/2)
±√[(1 - cosθ)/2]
Cos(θ/2)
±√[(1 + cosθ)/2]
Tan(θ/2)
(1 - cosθ)/sinθ = sinθ/(1 + cosθ)
Law of Sines
a/sinA = b/sinB = c/sinC
Law of Cosines
c² = a² + b² - 2abcosC
Triangle Area - SAS
Area = ½absinC
Triangle Area - SSS
Heron's Formula (√[s(s-a)(s-b)(s-c)], s=(a+b+c)/2)
General Solution for sinθ = k
θ = sin⁻¹k + 2πn or π - sin⁻¹k + 2πn
General Solution for cosθ = k
θ = ±cos⁻¹k + 2πn
Polar to Rectangular Conversion
x = rcosθ, y = rsinθ
Rectangular to Polar Conversion
r = √(x² + y²), θ = tan⁻¹(y/x)
Dot Product of Vectors
u·v = u₁v₁ + u₂v₂
Orthogonal Vectors
u·v = 0
Polar Form of Complex Numbers
r(cosθ + isinθ) = rcisθ
Complex Number Multiplication in Polar Form
Multiply magnitudes, add angles