1/16
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Geometric Series Test
A series of the form
\sum_{n=0}^\infty ar^n
Geometric Series Test - Convergence
Converges if |r| < 1. The sum is
\frac{a}{1 - r}
Geometric Series Test - Divergence
Diverges if |r| \geq 1
P-Series Test
A series of the form
\sum_{n=1}^\infty \frac{1}{n^p}
P-Series Test - Convergence
Converges if p > 1
P-Series Test - Divergence
Diverges if p \leq 1
Test for Divergence (Nth-Term Test)
For
\sum an
, if
\lim{n \to \infty} a_n \neq 0
or does not exist, the series diverges.
Test for Divergence Note
If
\lim{n \to \infty} an = 0
, the series may converge or diverge (use other tests).
Integral Test
For a positive, continuous, decreasing function f(n) such that an = f(n),
\sum an
and
\int f(x)dx
either both converge or both diverge.
Comparison Test - Convergence
Compare
\sum an
with a known series
\sum bn
. If 0 \leq an \leq bn and
\sum bn
converges, then
\sum an
converges.
Comparison Test - Divergence
Compare
\sum an
with a known series
\sum bn
. If 0 \leq bn \leq an and
\sum bn
diverges, then
\sum an
diverges.
Limit Comparison Test
For
\sum an
and
\sum bn
, let
\lim{n \to \infty} \frac{an}{bn} = c
, where c > 0. If
\sum bn
converges,
\sum an
also converges. If
\sum bn
diverges,
\sum a_n
also diverges.
Alternating Series Test (Leibniz Test)
For an alternating series
\sum (-1)^n an
, where an > 0, converges if an is decreasing and
\lim{n \to \infty} a_n = 0
Ratio Test
For
\sum an
, compute
L = \lim{n \to \infty} \left|\frac{a{n+1}}{an}\right|
. If L < 1, the series converges absolutely. If L > 1 or L = \infty, the series diverges. If L = 1, the test is inconclusive.
Root Test
For
\sum an
, compute
L = \lim{n \to \infty} \sqrt[n]{|a_n|}
. If L < 1, the series converges absolutely. If L > 1 or L = \infty, the series diverges. If L = 1, the test is inconclusive.
Absolute Convergence Test
If
\sum |an|
converges, then
\sum an
converges absolutely.
Conditional Convergence
A series
\sum an
converges conditionally if
\sum an
converges, but
\sum |a_n|
diverges.