Constant multiple
∫c • f(x)dx= c • ∫f(x)dx
Sum & Difference
∫[f(x) ± g(x)]dx = ∫f(x)dx ± ∫g(x)dx
Power rule
∫x^n dx = x^(n+1)/(n+1) +C
∫cosdx =
sinx +C
∫sec²xdx =
tanx +C
∫secxtanxdx=
secx +C
∫sinxdx =
-cosx+ C
∫csc²xdx =
-cotx+ C
∫cscxcotx =
-cscx +C
∫e^xdx=
e^x +C
∫(1/x)dx =
ln|x| +C
Fundamental Theorem of Calculus
Basically, you find the antiderivative [F(x)], and then define the function with the b and a values given [F(b) - F(a)].
∫tanxdx=
-ln|cosx| + C
∫secxdx =
ln|secx+tanx| +C
∫cotxdx
ln|sinx| + C
∫cscxdx
-ln|cscx+cotx| + C
∫dx/sqrt(1-x²)
arcsin(x/a) + C
∫dx/1+x²
1/A(arctan(U/A)) + C