1/17
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Constant multiple
ā«c ā¢ f(x)dx= c ā¢ ā«f(x)dx
Sum & Difference
ā«[f(x) Ā± g(x)]dx = ā«f(x)dx Ā± ā«g(x)dx
Power rule
ā«x^n dx = x^(n+1)/(n+1) +C
ā«cosdx =
sinx +C
ā«secĀ²xdx =
tanx +C
ā«secxtanxdx=
secx +C
ā«sinxdx =
-cosx+ C
ā«cscĀ²xdx =
-cotx+ C
ā«cscxcotx =
-cscx +C
ā«e^xdx=
e^x +C
ā«(1/x)dx =
ln|x| +C
Fundamental Theorem of Calculus
Basically, you find the antiderivative [F(x)], and then define the function with the b and a values given [F(b) - F(a)].
ā«tanxdx=
-ln|cosx| + C
ā«secxdx =
ln|secx+tanx| +C
ā«cotxdx
ln|sinx| + C
ā«cscxdx
-ln|cscx+cotx| + C
ā«dx/sqrt(1-xĀ²)
arcsin(x/a) + C
ā«dx/1+xĀ²
1/A(arctan(U/A)) + C