APPC Unit 3C: Trigonometric Identities

studied byStudied by 2 people
0.0(0)
learn
LearnA personalized and smart learning plan
exam
Practice TestTake a test on your terms and definitions
spaced repetition
Spaced RepetitionScientifically backed study method
heart puzzle
Matching GameHow quick can you match all your cards?
flashcards
FlashcardsStudy terms and definitions

1 / 18

flashcard set

Earn XP

Description and Tags

Reid AP Precalculus

19 Terms

1

Reciprocal: sin x

1/csc x.

The reciprocal identity states that the sine function is the reciprocal of the cosecant function.

New cards
2

Reciprocal: cos x

1/sec x

The reciprocal identity states that the cosine function is the reciprocal of the secant function.

New cards
3

Reciprocal: tan x

1/cot x

The reciprocal identity states that the tangent function is the reciprocal of the cotangent function.

New cards
4

Reciprocal: csc x

1/sin x

The reciprocal identity states that the cosecant function is the reciprocal of the sine function.

New cards
5

Reciprocal: sec x

1/cos x

The reciprocal identity states that the secant function is the reciprocal of the cosine function.

New cards
6

Reciprocal: cot x

1/tan x

The reciprocal identity states that the cotangent function is the reciprocal of the tangent function.

New cards
7

Quotient: tan x

sin x / cos x

New cards
8

Quotient: cot x

cos x / sin x

New cards
9

Pythagorean: sin²x

= 1-cos²x

New cards
10

Pythagorean: cos²x

1-sin²x

New cards
11

Pythagorean: sin²x + cos²x

= 1

New cards
12

Pythagorean: 1+tan²x

= sec²x

New cards
13

Pythagorean: 1+cot²

csc²x

New cards
14

Sum: sin(a+b)

sin a cos b + cos a sin b

New cards
15

Sum: cos(a+b)

= cos a cos b - sin asin b

New cards
16

Difference: sin(a-b)

= sin a cos b - cos a sin b

New cards
17

Difference: cos (a-b)

= cos a cos b + sin a sin b

New cards
18

Double-Angle: sin(2u)

= 2sin u cos u

New cards
19

Double-Angle: cos(2u)

=

cos²u - sin²u

2cos²u-1

1-2sin²u

New cards
robot