1/68
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
sin x
Opposite / Hypotenuse
cos x
Adjacent / Hypotenuse
tan x
sin x / cos x
cot x
cos x / sin x
sec x
1 / cos x
csc x
1 / sin x
Quotient Identities
tan x = sin x / cos x
cot x = cos x / sin x
Reciprocal Identities
sec x = 1 / cos x
csc x = 1 / sin x
Pythagorean Identities
sin²x + cos²x = 1
sec²x - tan² x =1
Even-Odd Identities
sin(-x) = -sin x
cos (-x) = cos x
tan(-x) = -tan x
Double Angle Identities
sin(2x) = 2sin x cos x
cos²x - sin²x = cos2x
Power-Reducing Formulas
cos²x = (1 + cos 2x)/2
sin²x = (1-cos2x)/1
Sum & Difference (Sine)
sin(A+B) = sinA cosB + cosA sinB
sin (A-B) = sinAcosB - cosAsinB
Sum & Difference (Cosine)
cos(A+B) = cosA cosB - sinA sinB
cos(A-B) = cosAcosB + sinAsinB
Product-to-Sum Formulas
sinA cosB = (sin(A-B) + sin(A+B))/2
cosAsinB = (sin(A+B) - sin(A-B))/2
sinAsinB = (cos(A-B) - cos (A+B))/2
cosAcosB = (cos(A-B) + cos(A+B))/2
Definition of |x|
|x| = x if x ≥ 0
|x| = -x if x < 0
Law of Cosines
c² = a² + b² - 2ab cos C
Distance Formula
√((x₂-x₁)² + (y₂-y₁)²)
Midpoint Formula
((x₁+x₂)/2 , (y₁+y₂)/2)
Laws of Logarithms
ln(ab) = ln a + ln b
ln(a/b) = lna - lnb
ln(a^n) = n ln a
ln (1/a) = -lna
ln(0) → undef.
ln(1) = 0
ln(e) = 1
One-Sided Limits
from left: lim f(x) = L
from right: lim f(x) = L
Definition of a Limit
lim f(x) = L iff lim f(x) from left = L = lim f(x) from right
Limit Laws (x→a)
lim(f+g)=lim f + lim g
lim(f-g)=lim f - lim g
lim (c*f) = c lim f
lim (fg) = lim f * lim g
lim f/g = lim f / lim g
lim k = k
lim x = a
lim nth sqrt f(x) = nth sqrt (lim f(x))
lim f(g(x)) = f(lim g(x))
Continuity Definition
f is continuous at x=c if (1) f(c) exists, (2) lim f(x) exists, (3) lim f(x) = f(c)
Intermediate Value Theorem (IVT)
If f is continuous on [a,b], f(a) doesn’t = f(b), k is between f(a) and f(b), then c exists between a & B such that f(c)=k
Squeeze Theorem
If f(x) ≤ g(x) ≤ h(x) and lim f(x) = lim h(x) = L, then lim g(x) = L
Vertical Asymptote
x=a is a vertical asymptote if lim f(x)→±∞ as x→a±
Horizontal Asymptote
y=a is a horizontal asymptote if lim f(x)=a as x→±∞
Limits of the ratios of two functions
ln^d a < x^c < x^c ln^d a < x^c+d < a^x < x! < x^x
lim (x → infinity) g(x)/f(x) = 0
lim (x → infinity) f(x) / g(x) → infinity
Common Limits
lim (sin x)/x = 1
Definition of Derivative
f'(x) = lim (f(x+h)-f(x))/h as h→0
Alternate Definition of Derivative
f'(c) = lim (f(x)-f(c))/(x-c)
Average Rate of Change
(f(b)-f(a))/(b-a)
Not Differentiable Conditions
(1) Discontinuity
Velocity/Acceleration
s(t) = position
Speed Rules
At rest when v(t)=0
Product Rule
(fg)' = f'g + fg'
Quotient Rule
(f/g)' = (f'g - fg')/g²
Chain Rule
If h(x)=f(g(x)), h'(x)=f'(g(x))·g'(x)
Linear Approximation
y ≈ f(a) + f'(a)(x-a)
Differentials
dy = f'(x) dx
Inverse Function Derivative
(f⁻¹)'(x) = 1 / f'(f⁻¹(x))
L’Hôpital’s Rule
If lim f(x)/g(x) is 0/0 or ∞/∞, then lim f(x)/g(x) = lim f'(x)/g'(x)
Derivative of Constant
d/dx(c) = 0
Constant Multiple Rule
d/dx(c·f(x)) = c·f'(x)
Power Rule
d/dx(xⁿ) = n xⁿ⁻¹
Sum Rule
d/dx(f+g) = f' + g'
Difference Rule
d/dx(f-g) = f' - g'
d/dx(e^x)
e^x
d/dx(a^x)
a^x ln a
d/dx(sin x)
cos x
d/dx(cos x)
-sin x
d/dx(tan x)
sec²x
d/dx(csc x)
-csc x cot x
d/dx(sec x)
sec x tan x
d/dx(cot x)
-csc²x