1/29
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Implication rules can ONLY be applied to whole lines, whereas replacement rules can be used on whole lines AND parts of lines.
Replacement rules represent logical equivalences, whereas implication rules do not.
What are the two key differences between the “replacement” rules introduced in this chapter and the “implication” rules in the preceding chapter?
Double Negation
Commutativity
Associativity
Demorgan’s Rule
Distribution
Transposition
Material Implication
Exportation
Tautology
Material Equivalence
What rules of replacement are introduced in this chapter?
True
True or False: The step below is a correct application of the commutativity rule.
(A ● B) ⊃ C
(B ● A) ⊃ C 1, Com
True
True or False: The step below is a correct application of the double negation rule.
(A ● B) ⊃ ∼∼C
(A ● B) ⊃ C 1, DN
False
True or False: The step below is a correct application of DeMorgan’s rule.
∼(P ⊃ R)
∼P ● ∼R 1, DM
True
True or False: The proof sequence below is correct.
∼(P ● Q)
∼P ∨ ∼Q 1, DM
P ⊃ ∼Q 2, Impl
∼∼Q ⊃ ∼P 3, Trans
False
Must ALL be wedges or ALL dots
True or False: The step below is a correct application of the associativity rule.
S ● (T ∨ R)
(S ● T) ∨ R 1, Assoc
True
True or False: The step below is a correct application of the distribution rule.
S ● (T ∨ R)
(S ● T) ∨ (S ● R) 1, Dist
False
True or False: There is no error in the proof sequence below.
∼A ∨ ∼B
A ≡ B
(A ● B) ● (∼A ● ∼B) 2, Equiv
∼(A ● B) 1, DM
False
True or False: The step below is valid.
A ⊃ A
A 1, Taut
True
True or False: The step below is valid.
(R ● S) ⊃ P
R ⊃ (S ⊃ P) 1, Exp
∼(J ∨ K)
J ∨ (M ⊃ O)
∼O /∼M
∼J ● ∼K 1, DM
∼J 4, Simp
M ⊃ O 2, 5 DS
∼M 3, 6 MT
Construct a proof for the argument below:
∼(J ∨ K)
J ∨ (M ⊃ O)
∼O /∼M
A ∨ (B ∨ C)
∼(D ∨ C) / B ∨ A
∼D ∼C 2, DM
(A ∨ B) ∨ C 1, Assoc
∼C 3, Simp
A ∨ B 4, 5 DS
B ∨ A 6, Com
Construct a proof for the argument below:
A ∨ (B ∨ C)
∼(D ∨ C) /B ∨ A
R ⊃ (K ● S)
R ∨ R
(S ● K) ⊃ ∼∼T / T ∨ M
R 2, Taut
K ● S 1, 4 MP
S ● K 5, Com
∼∼T 3, 6 MP
T 7, DN
T ∨ M 8, Add
Construct a proof for the argument below:
R ⊃ (K ● S)
R ∨ R
(S ● K) ⊃ ∼∼T /T ∨ M
(∼A ⊃ B) ● (∼C ⊃ D)
∼(A ● C) /B ∨ D
∼A ∨ ∼C 2, DM
B ∨ D 1, 3 CD
Construct a proof for the argument below:
(∼A ⊃ B) ● (∼C ⊃ D)
∼(A ● C) /B ∨ D
∼L /∼(L ● M)
∼L ∨ ∼M 1, Add
∼(L ● M) 2, DM
Construct a proof for the argument below:
∼L /∼(L ● M)
∼(∼R ∨ ∼S)
S ⊃ [A ● (C ● B)] /B ● C
∼∼R ● ∼∼S 1, DM
R ● S 3, DN/DN
S 4, Simp
A ● (C ● B) 2, 5 MP
C ● B 6, Simp
B ● C 7, Com
Construct a proof for the argument below:
∼(∼R ∨ ∼S)
S ⊃ [A ● (C ● B)] /B ● C
M ∨ (S ● K)
A ● (B ● C)
K ⊃ ∼C /M
(A ● B) ● C 2, Assoc
C 4, Simp
∼∼C 5, DN
∼K 3, 6 MT
∼K ∨ ∼S 7, Add
∼S ∨ ∼K 8, Com
∼(S ● K) 9, DM
M 1, 10 DS
Alternative:
M ∨ (S ● K)
A ● (B ● C)
K ⊃ ∼C /M
(M ∨ S) ● (M ∨ K) 1, Dist
M ∨ K 4, Simp
(A ● B) ● C 2, Com
C 6, Simp
∼∼C 7, DN
∼K 3, 8 MT
M 5, 9 DS
Construct a proof for the argument below:
M ∨ (S ● K)
A ● (B ● C)
K ⊃ ∼C /M
P
S ∨ T
∼P ∨ ∼T /P ● S
∼∼P 1, DN
∼T 3, 4 DS
S 2, 5 DS
P ● S 1, 6 Conj
Construct a proof for the argument below:
P
S ∨ T
∼P ∨ ∼T /P ● S
(J ● K) ∨ (J ● M)
J ⊃ (L ⊃ O)
O ⊃ ∼S /L ⊃ ∼S
J ● (K ∨ M) 1, Dist
J 4, Simp
L ⊃ O 2, 5 MP
L ⊃ ∼S 3, 6 HS
Construct a proof for the argument below:
(J ● K) ∨ (J ● M)
J ⊃ (L ⊃ O)
O ⊃ ∼S /L ⊃ ∼S
F ⊃ (J ● K)
∼K
F ∨ (G ≡ H)
M ⊃ ∼(G ≡ H) /∼M
∼K ∨ ∼J 2, Add
∼J ∨ ∼K 5, Com
∼(J ● K) 6, DM
∼F 1, 7 MT
G ≡ H 3, 8 DS
∼∼(G ≡ H) 9, DN
∼M 4, 10 MT
Construct a proof for the argument below:
F ⊃ (J ● K)
∼K
F ∨ (G ≡ H)
M ⊃ ∼(G ≡ H) /∼M
∼M ∨ O
(M ⊃ O) ⊃ (P ⊃ R) /∼P ∨ R
M ⊃ O 1, Impl
P ⊃ R 2, 3 MP
∼P ∨ R 4, Impl
Construct a proof for the argument below:
∼M ∨ O
(M ⊃ O) ⊃ (P ⊃ R) /∼P ∨ R
H ⊃ (G ∨ G)
∼(G ● G) /∼H
∼G ∨ ∼G 2, DM
∼G 3, Taut
H ⊃ G 1, Taut
∼H 4, 5 MT
Construct a proof for the argument below:
H ⊃ (G ∨ G)
∼(G ● G) /∼H
C ≡ D
∼C
D ∨ G /G
(C ⊃ D) ● (D ⊃ C) 1, Equiv
D ⊃ C 4, Simp
∼D 2, 5 MT
G 3, 6 DS
Construct a proof for the argument below:
C ≡ D
∼C
D ∨ G /G
∼(J ● K)
J ≡ K
∼K ⊃ (M ⊃ O) /∼O ⊃ ∼M
(J ● K) ∨ (∼J ●∼ K) 2, Equiv
∼J ● ∼K 1, 4 DS
∼K 5, Simp
M ⊃ O 3, 6 MP
∼O ⊃ ∼M 7, Trans
Construct a proof for the argument below:
∼(J ● K)
J ≡ K
∼K ⊃ (M ⊃ O) /∼O ⊃ ∼M
∼A ∨ M
A ∨ (A ∨ B)
∼B /T ⊃ M
(A ∨ A) ∨ B 2, Assoc
A ∨ A 3, 4 DS
A 5, Taut
∼∼A 6, DN
M 1, 7 DS
M ∨ ∼T 8, Add
∼T v M 9, Com
T ⊃ M 10, Impl
Construct a proof for the argument below:
∼A ∨ M
A ∨ (A ∨ B)
∼B /T ⊃ M
Construct a proof for the argument below:
(T ● M) ⊃ ∼U
D ⊃ T
∼(∼D ∨ ∼F) /∼M ∨ ∼U
Construct a proof for the argument below:
∼D ∨ C
∼F ∨ G
∼(∼D ● ∼F) /C ∨ G
Construct a proof for the argument below:
∼A ⊃ ∼B
D ⊃ C
∼A ∨ ∼C /∼B ∨ ∼D
Construct a proof for the argument below:
(K ● M) ∨ (K ● N)
K ≡ (L ⊃ O)
∼O /K ● ∼L