Chapter 10 Exercises: Proofs II (Symbolic Logic)

0.0(0)
studied byStudied by 0 people
0.0(0)
full-widthCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/29

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

30 Terms

1
New cards

Implication rules can ONLY be applied to whole lines, whereas replacement rules can be used on whole lines AND parts of lines.

Replacement rules represent logical equivalences, whereas implication rules do not. 

What are the two key differences between the “replacement” rules introduced in this chapter and the “implication” rules in the preceding chapter?

2
New cards
  • Double Negation

  • Commutativity

  • Associativity

  • Demorgan’s Rule

  • Distribution

  • Transposition

  • Material Implication

  • Exportation

  • Tautology

  • Material Equivalence

What rules of replacement are introduced in this chapter?

3
New cards

True

True or False: The step below is a correct application of the commutativity rule.

  1. (A  B) C

  2. (B   A) C 1, Com

4
New cards

True

True or False: The step below is a correct application of the double negation rule.

  1. (A B) ∼∼C

  2. (A B) C 1, DN

5
New cards

False

True or False: The step below is a correct application of DeMorgan’s rule.

  1. (P R)

  2. P R 1, DM

6
New cards

True

True or False: The proof sequence below is correct.

  1. ∼(P ● Q)

  2. ∼P ∨ ∼Q 1, DM

  3. P ⊃ ∼Q 2, Impl

  4. ∼∼Q ⊃ ∼P 3, Trans

7
New cards

False

  • Must ALL be wedges or ALL dots

True or False: The step below is a correct application of the associativity rule.

  1. S (T R)

  2. (S T) R               1, Assoc

8
New cards

True

True or False: The step below is a correct application of the distribution rule.

  1. (T  R)

  2. (S  T)  (S  R)      1, Dist

9
New cards

False

True or False: There is no error in the proof sequence below.

  1. A B

  2. B

  3. (A B) (A B) 2, Equiv

  4. (A B) 1, DM

10
New cards

False

True or False: The step below is valid.

  1. A A

  2. A 1, Taut

11
New cards

True

True or False: The step below is valid.

  1. (R S) P

  2. R (S P) 1, Exp

12
New cards
  1. (J  K)

  2. (M  O)

  3. O              /M

  4. ∼J ● ∼K          1, DM

  5. ∼J                  4, Simp

  6. M ⊃ O 2, 5 DS

  7. ∼M 3, 6 MT

Construct a proof for the argument below:

  1. (J  K)

  2. (M  O)

  3. O              /M

13
New cards
  1. A (B C)

  2. (D C)              / B ∨ A

  3. ∼D ∼C                  2, DM

  4. (A  B)  C          1, Assoc

  5. ∼C                         3, Simp

  6. A B                     4, 5 DS

  7. ∨ A                     6, Com

Construct a proof for the argument below:

  1. A (B C)

  2. (D C)            /B ∨ A

14
New cards
  1. R (K S)

  2. R ∨ R

  3. (S K) ∼∼T /   T M

  4. R                          2, Taut

  5. K S                   1, 4 MP

  6. S K                    5, Com

  7. ∼∼T                      3, 6 MP

  8. T                            7, DN

  9. T M                     8, Add

Construct a proof for the argument below:

  1. R (K S)

  2. R ∨ R

  3. (S K) ∼∼T             /T M

15
New cards
  1. (A B) (C D)

  2. (A C)                        /B D

  3. ∼A ∨ ∼C                       2, DM

  4. ∨ D                            1, 3 CD

Construct a proof for the argument below:

  1. (A B) (C D)

  2. (A C) /B D

16
New cards
  1. L /(L M)

  2. L M 1, Add

  3. (L M) 2, DM

Construct a proof for the argument below:

  1. L /(L M)

17
New cards
  1. ( S)

  2. [A  (C  B)]           /B  C

  3. ∼∼R ● ∼∼S                   1, DM

  4. R ● S                             3, DN/DN

  5. S                                    4, Simp

  6. (C  B)                    2, 5 MP

  7. B                             6, Simp

  8. C                             7, Com

Construct a proof for the argument below:

  1. ( S)

  2. [A  (C  B)]           /B  C

18
New cards
  1. M (S  K)

  2. (B  C)

  3. K C                       /M

  4. (A ● B) ● C                 2, Assoc

  5. C                                4, Simp

  6. ∼C                           5, DN            

  7. ∼K                              3, 6 MT

  8. ∼K ∨ ∼S                    7, Add

  9. ∼S ∨ ∼K                    8, Com

  10. ∼(S ● K)                     9, DM

  11. M                                1, 10 DS

Alternative:

  1. M (S  K)

  2. (B  C)

  3. K C                       /M

  4. (M  S)  (M  K)              1, Dist

  5. K                             4, Simp

  6. (A  B)  C                       2, Com

  7. C                                  6, Simp

  8. ∼∼C                             7, DN

  9. ∼K                                3, 8 MT

  10. M                                  5, 9 DS

Construct a proof for the argument below:

  1. M (S  K)

  2. (B  C)

  3. K C /M

19
New cards
  1. P

  2. S T

  3. P T                     /P S

  4. ∼∼P                             1, DN

  5. T                               3, 4 DS

  6. S                                  2, 5 DS

  7. P S                            1, 6 Conj

Construct a proof for the argument below:

  1. P

  2. S T

  3. P T /P S

20
New cards
  1. (J K) (J M)

  2. J (L O)

  3. O S                 /L ⊃ ∼S

  4. J ● (K ∨ M)            1, Dist

  5. J                             4, Simp

  6. L O                      2, 5 MP

  7. L ⊃ ∼S                    3, 6 HS

Construct a proof for the argument below:

  1. (J K) (J M)

  2. J (L O)

  3. O S /L ⊃ ∼S

21
New cards
  1. F (J K)

  2. K

  3. (G H)

  4. M (G H)         /M

  5. K ∨ ∼J                 2, Add

  6. ∼J ∨ ∼K                 5, Com

  7. ∼(J ● K)                  6, DM

  8. ∼F                           1, 7 MT

  9. G H                       3, 8 DS

  10. ∼∼(G H)                  9, DN

  11. M                             4, 10 MT

Construct a proof for the argument below:

  1. F (J K)

  2. K

  3. (G H)

  4. M (G H) /M

22
New cards
  1. O

  2. (M  O)  (P  R)          / R

  3. O                             1, Impl

  4. R                              2, 3 MP

  5. R                            4, Impl

Construct a proof for the argument below:

  1. O

  2. (M  O)  (P  R)          / R

23
New cards
  1. H (G G)

  2. (G  G)                   /H

  3. G G                  2, DM

  4. ∼G                            3, Taut

  5. H ⊃ G                       1, Taut

  6. ∼H                            4, 5 MT

Construct a proof for the argument below:

  1. H (G G)

  2. (G  G) /H

24
New cards
  1. D

  2. C

  3. D G                            /G

  4. (C ⊃ D) ● (D ⊃ C)           1, Equiv

  5. D ⊃ C                              4, Simp

  6. ∼D                                   2, 5 MT

  7. G                                     3, 6 DS

Construct a proof for the argument below:

  1. D

  2. C

  3. D G                     /G

25
New cards
  1. (J K)

  2. J K

  3. K (M O) /O M

  4. (J K) (J ●∼ K) 2, Equiv

  5. J ● ∼K                   1, 4 DS

  6. K                            5, Simp

  7. M O                       3, 6 MP

  8. O M                   7, Trans

Construct a proof for the argument below:

  1. (J K)

  2. J K

  3. K (M O) /O M

26
New cards
  1. M

  2. (A  B)

  3. B /T M

  4. (A  A)  B 2, Assoc

  5. A 3, 4 DS

  6. A 5, Taut

  7. ∼∼A 6, DN

  8. M 1, 7 DS

  9. M ∨ ∼T 8, Add

  10. ∼T v M 9, Com

  11. T M 10, Impl

Construct a proof for the argument below:

  1. M

  2. (A  B)

  3. B /T M

27
New cards

Construct a proof for the argument below:

  1. (T M)  U

  2. T

  3. (D F) /M U

28
New cards

Construct a proof for the argument below:

  1. C

  2. G

  3. ( F)         /C  G

29
New cards

Construct a proof for the argument below:

  1. A B

  2. D C

  3. A C /B D

30
New cards

Construct a proof for the argument below:

  1. (K M)  (K N)

  2. (L O)

  3. O /K L