1/27
Flashcards for calculus formulas and theorems.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx sin(x)
cos(x)
d/dx cos(x)
-sin(x)
d/dx e^x
e^x
d/dx tan(x)
sec²(x)
d/dx cot(x)
-csc²(x)
d/dx sec(x)
sec(x)tan(x)
∫sin(u) du
-cos(u) + C
∫cos(u) du
sin(u) + C
∫e^x du
e^x + C
∫tan(u) du
-ln|cos(u)| + C
∫cot(u) du
ln|sin(u)| + C
∫sec(u) du
ln|sec(u) + tan(u)| + C
d/dx logₐ(u)
u'/(ln(a) * u)
d/dx ln|u|
u'/u
d/dx aᵘ
ln(a) * aᵘ * u'
d/dx eᵘ
eᵘ * u'
d/dx arcsin(u)
u'/√(1-u²)
d/dx arccos(u)
-u'/√(1-u²)
d/dx arctan(u)
u'/(1+u²)
∫sec²(u) du
tan(u) + C
∫csc²(u) du
-cot(u) + C
∫sec(u)tan(u) du
sec(u) + C
∫csc(u)cot(u) du
-csc(u) + C
∫du/u
ln|u| + C
∫aᵘ du
aᵘ/ln(a) + C
Intermediate Value Theorem (IVT)
If f(x) is continuous on [a,b], then there exists a 'c' on (a,b) where f(a) < f(c) < f(b) or f(a) > f(c) > f(b)
Extreme Value Theorem (EVT)
If f(x) is continuous on [a,b], then f(x) has both an absolute minimum and an absolute maximum on [a,b]. Use the Candidate's Test to solve.
Mean Value Theorem (MVT)
If f(x) is continuous on [a,b] and differentiable on (a,b), then there exists a 'c' in (a,b) such that f'(c) = (f(b) - f(a))/(b-a), where f'(c) is the Instantaneous Rate of Change (IROC) and (f(b) - f(a))/(b-a) is the Average Rate of Change (AROC).