Question Bank for metaphysics of God

0.0(0)
studied byStudied by 0 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/14

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

15 Terms

1
New cards

What does Hick mean by eschatological verification? (3m)

• Hick understands eschatological verification as being (1) the removal of rational doubt concerning a claim (2) based on some kind of (predicted) experience which (3) can only happen at the end of time/after our death.

• Students may also represent eschatological verification as: 1) the possibility of establishing the meaningful (cognitive or factual) content of some religious claim (or language) by 2) some confirmatory experience (proof) 3) at the end of time/after death.

2
New cards

Outline Leibniz’s cosmological argument from the principle of sufficient reason (5m)

• Students might make any of the following contextual points about Leibniz’s argument:

o It is a deductive argument. o It focuses on the contingency of facts (or things/begins/events). o It can be seen as a development/improvement on Aquinas’ Third Way.

P1 The principle of sufficient reason: every fact has an explanation that provides a sufficient reason for why things are as they are and not otherwise.

P2 There are two kinds of truth: those of reasoning and those of fact:

P2a Truths of reasoning are necessary and their opposite is impossible. The sufficient reason for a truth of reason is found by a priori analysis: a finite process of analysis will resolve it into primitive truths of identity.

P2b Truths of fact are contingent, and their opposite is possible. The sufficient reason for a truth of fact cannot be found in other contingent truths, because these too will require a reason, and so on: no finite process of analysis will resolve into primitive truths of identity.

C1 Therefore, to provide a sufficient reason for any contingent fact, we must look outside the sequence of contingent facts.

C2 Therefore, the sufficient reason for contingent facts must be a necessary substance (or being) that is a sufficient reason for all contingent facts.

C3 This necessary substance (or being) is God.

C4 Therefore, God exists.

• The above version of Leibniz’s argument focuses on ‘facts’ and is based on Leibniz’s Monadology. However, students might focus the argument on ‘things’ or ‘beings’ (as in the Theodicy), and this would be equally acceptable.

• In brief, the aforementioned argument would be that:

1) contingent beings require a sufficient reason/explanation for their existence);

2) this reason/explanation cannot (ultimately) be any other contingent beings or collection thereof (since this would simply add to the beings we are trying to explain); so

3) we require a reason/explanation outside the collection/set of contingent beings;

4) this sufficient reason/explanation is a necessary being: God.

• Students may equally present the argument with the focus on events.

3
New cards

Explain how inductive and deductive arguments for the existence of God differ (5m)

Students may choose to answer this by discussing what in general makes an argument for God fit into either of these categories, or they may use one or more specific examples of arguments to explain the difference.

  • More complicated / controversial examples Paley’s design argument • Though some have historically interpreted it as analogical…

  • …the standard current interpretation is that it is deductive. (under deductive category)

  • • Plus, regardless of whether the argument for a designer is deductive or inductive, the further inference from “designer” to “God” (as traditionally understood) if not intended to be valid would then be inductive.

  • Most cosmological arguments are more difficult to characterise: (under both)

    • The first stage of proving a first cause/first beginner/prime mover/first changer/necessary being is deductive (intended to be valid).

    • There may then be differences between whether the proponents of such arguments see the next step to this being God as deductive or inductive.

Students are not required to explain what such arguments have in common – ie that they are arguments for the existence of God. However, some might explain what is meant by God’s existence in this context (ie, what kind of being’s existence these arguments are intending to establish). o A being with a large proportion of the following characteristics (there is obviously dispute over the characteristics): omnipotent, omniscient, omnibenevolent/morally perfect, eternal or everlasting. o Or, in more generally terms: a supremely perfect being (Descartes); the greatest conceivable being (Anselm); an unlimited being (Malcolm).

Students who progress to Level 3 and beyond will apply the distinction between the types of argument with specific reference to arguments for the existence of God.

<p>Students may choose to answer this by discussing what in general makes an argument for God fit into either of these categories, or they may use one or more specific examples of arguments to explain the difference. </p><ul><li><p>More complicated / controversial examples Paley’s design argument • Though some have historically interpreted it as analogical…</p></li><li><p> …the standard current interpretation is that it is deductive. (under deductive category) </p></li><li><p>• Plus, regardless of whether the argument for a designer is deductive or inductive, the further inference from “designer” to “God” (as traditionally understood) if not intended to be valid would then be inductive. </p><p></p></li><li><p>Most cosmological arguments are more difficult to characterise: (under both) </p><ul><li><p> The first stage of proving a first cause/first beginner/prime mover/first changer/necessary being is deductive (intended to be valid). </p></li><li><p>There may then be differences between whether the proponents of such arguments see the next step to this being God as deductive or inductive.</p></li></ul></li></ul><p></p><p></p><p>Students are not required to explain what such arguments have in common – ie that they are arguments for the existence of God. However, some might explain what is meant by God’s existence in this context (ie, what kind of being’s existence these arguments are intending to establish). o A being with a large proportion of the following characteristics (there is obviously dispute over the characteristics): omnipotent, omniscient, omnibenevolent/morally perfect, eternal or everlasting. o Or, in more generally terms: a supremely perfect being (Descartes); the greatest conceivable being (Anselm); an unlimited being (Malcolm).</p><p></p><p>Students who progress to Level 3 and beyond will apply the distinction between the types of argument with specific reference to arguments for the existence of God.</p>
4
New cards

What does Swinburne mean by ‘temporal order/regularity’ in his design argument? (3m)

Temporal regularity refers to the order(s) of succession in nature/the world.

• The temporal arrangement (or regular patterns/behaviours) of physical objects / features of the universe (such as those explained by the laws of nature).

• The constancy/consistently in how events follow each other in time.

5
New cards

Explain the difference between the claims ‘God is eternal’ and ‘God is everlasting’ (3m)

• To say that God is eternal means that God exists outside time. He is timeless or atemporal. God has no beginning/end, since these make sense only in time (something starts/stops existing in time).

• To say that God is everlasting means that God exists in time. He exists throughout all time with no beginning or end.

6
New cards

Explain the evidential problem of evil. (5m)

Students might refer to the evidential problem of evil as the ‘inductive’ problem of evil and/or the ‘a posteriori’ problem of evil. Students might make a contrast with the logical problem of evil, but there is no requirement to do so. If students do and if it helps to clarify what is meant by the evidential problem of evil, then they should receive credit.

Credit should not be given for reference to the logical problem of evil alone.

• The quantity (and quality and distribution) of evil/suffering, although logically consistent with the existence of an omnibenevolent (all-loving, all good) and omnipotent (all-powerful) God, counts against the existence of such a God by lowering the probability that such a God exists.

• His being omnipotent (all-powerful) means that he has the capacity to reduce the amount of suffering and his being omnibenevolent (all-loving, all good) means that he has the desire to do so.

• Such a God would want to and be able to (and therefore would) reduce the amount of suffering to the absolute minimum

. • Students might add that his being omniscient (all-knowing) means that he is aware of the evils that exist.

7
New cards

Outline Aquinas’ Third Way. (5m)

Students can articulate the argument in a number of ways. As long as the articulation is consistent with the Aquinas text (which is given below, for ease of reference), then credit should be given.

P1: Contingent beings exist in the universe.

P2: If everything were contingent there would be a time when nothing existed.

P3: If this were so, there would be nothing now as nothing comes from nothing.

P4: Since contingent things do exist now (P1), there must be something that exists necessarily.

C: Therefore there must be something that exists necessarily.

Students might continue this argument in the following way:

P5: Every necessary thing either has its necessity caused by another or not.

P6: An infinite regression of causes is impossible.

C: There must be a necessary being (ie a being that has, of itself, its own necessity) and this all people call God.

8
New cards

Outline Norman Malcolm’s ontological argument. (5m)

Indicative content • Ontological arguments are a priori arguments for the existence of God (in the sense that all of the premises involved are themselves a priori).

• They are advanced as deductive arguments, intended to yield decisive conclusions given the truth of the premises.

• Malcolm’s version is contained in the article ‘Anselm’s ontological arguments’, and students may reasonably make an association between the two versions. Indeed, if they take Anselm’s conception of God as a being “greater than which cannot be conceived” as a premise from which they derive God’s “necessary” (or “impossible”) existence, this is fine. It should not be penalised as irrelevant or redundant.

• Students may mention that Malcom’s ontological argument is a modal version.

• Here is one way of setting Malcolm’s argument out in standard form.

o P1: God is conceived as an unlimited/infinite being

o P2: Either God does not exist or God exists.

o P3: If God does not exist then God’s existence would be impossible

 (because God cannot come into existence: it would either mean that his existence was caused by something else or just “happened” to occur, both of which would mean that God was limited).

o P4: If God does exist then God’s existence must be necessary

 (because God cannot come into or go out of existence: it would mean again that either God’s existence/demise was caused by something else or just “happened” to occur, both of which would mean that God was limited).

o C1: Therefore, God’s existence is either impossible or necessary.

o P5: If God’s existence is impossible then the concept must be self-contradictory/incoherent.

o P6: The concept of a necessary being (God) is not self-contradictory (it is coherent).

o C2: Therefore, God’s existence is not impossible.

o C3: Therefore, God’s existence is necessary (God must exist)

9
New cards

Explain how Ayer’s verification principle challenges the status of religious language (5m)

• The verification principle as define by Ayer: a (cognitively) meaningful utterance/sentence/proposition is either:

(1) an analytic (conceptual, tautological, logical) truth or (2) empirically verifiable

o Weak version: its probable truth could (potentially) be empirically verified.

o Strong version: its truth could in practice be conclusively empirically verified.

• Students may (but need not) associate this with the logical positivist movement.

• Applying this to religious language (taking God as the likely example):

o Because ‘God’ is a ‘metaphysical term/concept’ no sentences about God can be empirically verified, and claims about God are not analytically true. Therefore, no sentences about God are (cognitively) meaningful.

10
New cards

State the definitions of ‘God’ used by (a) Anselm and (b) Descartes in their ontological arguments.

Anselm understands God as a being than which nothing greater can be conceived. Descartes understands God as a supremely perfect being.

• For Anselm God is “that than which a greater [being] cannot be conceived’ (Proslogion 3).

For Descartes God is a being “with all perfections” (Meditations, 5th).

• Descartes defines God as a being who lacks no perfection(s), whereas Anselm defines God as a being so great than we cannot (possibly) think of a greater one

11
New cards

Explain the design argument from analogy as presented by Hume (5m)

• P1: Human artefacts (eg, cameras, machines, organisations – Hume discusses a watch and a knitting-loom) have certain ‘teleological’ properties (‘spatial order’: ie complexity, order, parts working towards a purpose, etc)

• P2: Nature itself (and natural entities within it: eg eyes) also has these same ‘teleological’ properties (‘spatial order’: ie complexity, order, parts working towards a purpose, etc)

• P3: Human artefacts have these teleological properties because they have been designed by an intelligent being

• P4: Similar effects/properties typically have similar causes/explanations

• C1: Therefore, nature/natural entities have these teleological properties because they have been designed by an intelligent being (ie God).

Optional part

• P5: Natural entities are much more complicated than human artefacts

• P6: This greater complexity requires greater intelligence

o This is concluded on the basis of P4 above: cf. Hume: “Since therefore the effects resemble each other, we are led to infer, by all the rules of analogy, that the causes also resemble; and that the author of nature is somewhat similar to the mind of man; though possessed of much larger faculties, proportioned to the grandeur of the work, which he has executed” (Dialogues Concerning Natural Religion, Pt. 2).

• C2: Therefore an intelligent being/designer exists which has much greater intelligence than a human (ie God).

12
New cards

Explain how Russell objects to the cosmological argument by arguing that it commits the fallacy of composition. (5m)

• Russell’s objection is directed at cosmological arguments (he was specifically objecting to Copleston’s argument which is similar in form to Leibniz’s argument from contingency and the principle of sufficient reason).

• Broadly speaking cosmological arguments are arguments for the existence of God as the one unique (first) cause/reason/explanation of some alleged general fact about reality.

• Students might put this in the context of a specific cosmological argument, or explain it more generally. Either is fine. But successful answers must show why the ‘fallacy of composition’ is (for Russell) a problem for this family of theistic arguments, and this presupposes some understanding of those arguments.

What is a ‘fallacy of composition’?

• An argument commits the so-called ‘fallacy of composition’ if the proponent wrongly concludes that something is true of the whole from the fact that it is true of all of the parts of that whole.

• Students may give examples (other than the cosmological argument itself) to explain. Here are some examples of the fallacy: o All bricks in the wall are cube-shaped therefore the whole wall is cube-shaped

o (Russell’s example) “Every man who exists has a mother...therefore the human race must have a mother” (Debate with Copleston).

Why does (Russell think that) the cosmological argument commits this fallacy?

• Russell is objecting to cosmological arguments that (he thinks) move from (a) premises about what is true of all of the parts of reality to (b) conclusions about the whole that those parts make up.

• In Copleston’s version of the cosmological argument he says that if the universe contains only contingent beings, it is itself contingent and must have a cause or explanation. Russell replies that our concept of cause is one we “we derive from our observation of particular things” and that it is therefore “not applicable to the total” ; “to reason in this way is to commit the fallacy.”

• As an objection to specific cosmological arguments this might be put in any of the following ways:

o Contingency: from the fact that parts of the universe are contingent we cannot conclude that the universe as a whole is contingent (and therefore needs a necessary cause/explanation: God).

o Requirement for explanation: from the fact that the parts of the universe are contingent and so require (and have) an explanation we cannot conclude that the universe as a whole is contingent and so requires (and has) an explanation (in the form of a necessary reason: God).

o Requirement for a cause: from the fact that the parts of the universe require (and have) a cause we cannot conclude that the universe as a whole requires (and has) a cause (in the form of a necessary first cause: God)

13
New cards

What does it mean to say that a person’s religious claim is unfalsifiable? (3m)

There are no possible states of affairs that would “count against the assertion, or which would induce the speaker to withdraw it and to admit that it had been mistaken” (which s/he “would regard as counting against, or as being incompatible with, its truth”).

• Whatever evidence is or could possibly be presented, the person would continue to make the religious claim (either by denying the evidence, or by claiming that the evidence is compatible with their claim).

• A religious claim/assertion (e.g. ‘God exists’) is unfalsifiable (and therefore meaningless) if there are no circumstances whereby the person making the claim would concede that there was evidence to disprove (or even undermine) this claim.

: In order to score full marks, the student’s response must 1) appreciation that this question is concerned with the status of religious language (e.g. references to ‘statements’, ‘assertions’, or ‘claims’ as is the question, rather than about ‘beliefs’ or ‘arguments’; and 2) that the claim (or individual making a claim) does not acknowledge any conditions whereby that claim would be falsified.

14
New cards

Outline Aquinas’ 1st Way (the argument from motion) (5m)

Here’s the argument in standard form:

o P1: The universe contains motion (ie change from potentially X to actually X)

o P2: Nothing can move/change itself (nothing can actualise its own potential) - it must be moved/changed by something distinct from it (“It is therefore impossible that in the same respect and in the same way a thing should be both mover and moved, ie that it should move itself.”)

o P3: If there were an infinite series of such secondary movers/changers (ie movers/changers moved/changed by other movers/changers) then there would be no first mover/changer. o P4: If there were no first mover/changer there could not be any motion/change - since if you remove the cause, you cannot have the effect (some particular motion/change wouldn’t occur if infinite other motion/changes needed to happen in order for it to happen)

o C1: Therefore, given P1 (ie that there is motion/change) there must be a first mover/changer

o P5: God is this first mover/changer (God is “pure actuality”/actus purus).

o C2: Therefore God exists

15
New cards

Explain the argument that the existence of an omniscient God is incompatible with free human beings. (5m)

Students will likely explain what is meant by God being omniscient. This could be explained in one or more of the following ways:

o God knows all true propositions

o God knows everything that it is possible to know

o God knows everything that it is possible for a being of his nature to know

o one of the claims above + God believes no false propositions

o for all propositions, God knows whether they are true or false

o some might include non-propositional knowledge (ie capacity and acquaintance knowledge).

• According to this argument, if an omniscient God exists then free human beings cannot possibly exist: God’s infallible knowledge is incompatible with humans making free choices.

• This may also be expressed as a conflict that arises when combining God’s omniscience with God’s supreme goodness, if it is assumed that a good God would give human beings free will.

• Students are likely to equate free will with a human’s counter-factual ability to have done otherwise than what they do (this is what has been used for the example argument below). This said, there are many accounts of free will that have been given and could be employed in relation to this question but it is impossible in this mark scheme to deal with all such possibilities.

• The argument in outline is that if God knows every proposition concerning my future, then, since knowledge is factive, God knows all the truths about my future and so for any such true proposition p, I am powerless to have made it false that p, or to have done other than I will do, in which case I am not free. The argument can be presented with greater and lesser precision/detail than the version below and can be presented in other formats (e.g. it may not be presented with a conditional first premise and a conditional conclusion).

o P1: God is omniscient if and only if God knows all true propositions.

o P2: There are true propositions about the future.

o P3: God is omniscient only if God knows all true future propositions (from 1,2).

o P4: If God knows all true future propositions, including those about my future actions, then it is impossible for those propositions about my future actions to be false.

o P5: If it is impossible for those propositions about my future actions to be false, then it is impossible for me to do otherwise than the action specified in those propositions, and so I am not free.

o C: Therefore, if God is omniscient, I am not free