(8) Linear Kinematics

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/30

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 5:21 PM on 4/7/25
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

31 Terms

1
New cards

Kinematic quantities

  • Linear Position

  • Linear Distance and Displacement

  • Linear speed and velocity

    • average vs instantaneous

  • Linear acceleration

2
New cards

Vector and Scalar

  • Tip to tail method (adding multiple vectors)

  • Vector Resolution and Composition (how to utilize vectors)

  • Component method

3
New cards

Linear Position

  • Linear location of object of interest at a given instant

  • Vector: Magnitude + Direction

  • Coordinates: r= [x, y] (r is the position vector)

  • Unit: m (meter)

<ul><li><p>Linear location of object of interest at a given instant </p></li><li><p>Vector: Magnitude + Direction</p></li><li><p>Coordinates:     <strong>r</strong>= [x, y]              (r is the position vector)</p></li><li><p>Unit: m (meter)</p></li></ul><p></p>
4
New cards
<p>Linear Distance</p>

Linear Distance

  • length of the path

    • how long/far

  • Scalar: Magnitude only

  • Unit: M

5
New cards

Linear Displacement

  • change in linear position

    • net effect of motion

  • Vector

  • Unit: m

d= delta r= r2 — r1 = [x2 - x1, y2 - y1]

<ul><li><p>change in linear position </p><ul><li><p>net effect of motion</p></li></ul></li><li><p>Vector</p></li><li><p>Unit: m </p></li></ul><p><strong>d=</strong> delta <strong>r= r<sub>2 </sub>— r<sub>1 </sub> = [x<sub>2</sub> - x<sub>1</sub>, y<sub>2</sub> - y<sub>1</sub>] </strong></p><p></p>
6
New cards

Tip to tail method- Purpose

  • used in vector ADDITION

  • to find the resultant(sum/net)

<ul><li><p>used in vector ADDITION</p></li><li><p>to find the resultant(sum/net)</p></li></ul><p></p>
7
New cards
<p>tip to tail- procedure </p>

tip to tail- procedure

  • connect all vectors tip to tail

  • resultant(sum or net): the vector from the tail of the first vector to the tip of the last vector

  • connection sequence is not important

8
New cards
<p>Basic Trigonometric functions</p>

Basic Trigonometric functions

  • Right triangle- hypotenuse, opposite leg, adjacent leg, theta is the angle of interest

  • Basic trig functions

    • sine (theta)= opposite/hypotenuse

    • cosine(theta)= adjacent/hypotenuse

    • tangent(theta)= opposite/adjacent or sin/cos

9
New cards
<p>Vector resolution (decomposition)</p>

Vector resolution (decomposition)

Breaking down a vector into components

  • v=vx+vy

  • use hypotenuse and angle to find length of opposite and adjacent legs

  • adj=hyp*cos(angle)

  • opp=hyp*sin(angle)

10
New cards
<p>Vector Composition</p>

Vector Composition

composing a vector from components

  • v=vx+vy

  • use adj and opp to find hyp and angle

    • use Pythagorean theorem to find hyp

    • use arctan(opp/adj) to find theta

11
New cards

Directions relative to the cardinal directions

Reminder- the direction after Due is the side it starts on

<p>Reminder- the direction after Due is the side it starts on</p><p></p>
12
New cards
<p>Example of directions </p>

Example of directions

knowt flashcard image
13
New cards
<p>The component method </p>

The component method

vectors can be described in components

  • v=[vx, vy] = [vcosΘ, vsinΘ]

    • Θ is the direction angle (measured from the X-axis)

  • Components

    • vx,vy = + or - number

    • sign= direction

    • numeric value: magnitude

v= vx+vy

14
New cards

Component method example

knowt flashcard image
15
New cards

Vector addition

A= [Ax, Ay]

B=[Bx, By]

A+B= [Ax, Ay] + [Bx, By] = [Ax + Bx, Ay + By]

16
New cards

Example of vector addition

knowt flashcard image
17
New cards
<p>Example 2 of vector addition </p>

Example 2 of vector addition

knowt flashcard image
18
New cards

Linear speed

  • how fast an object moves

  • linear distance/elapsed time v(bar)= d/𐤃t or v=d/dt

    • v (bar)= average speed

    • v= instantaneous speed

    • dt= infinitesimal duration

  • scalar quantities

  • unit: m/s

19
New cards

Linear velocity

  • rate of change in linear position

    • rate of linear displacement

    • how fast an object moves in which direction

  • linear displacement/elapsed time

    • v(bar)=𐤃r/𐤃t= d/𐤃t v=dr/dt=d/dt

    • dr: displacement during dt

  • vector

  • unit: m/s

<ul><li><p>rate of change in linear position</p><ul><li><p>rate of linear displacement </p></li><li><p>how fast an object moves in which direction</p></li></ul></li><li><p>linear displacement/elapsed time </p><ul><li><p>v(bar)=<span>𐤃r/𐤃t= d/𐤃t        v=dr/dt=d/dt</span></p></li><li><p><span>dr: displacement during dt</span></p></li></ul></li><li><p>vector </p></li><li><p>unit: m/s</p></li></ul><p></p>
20
New cards

CONT. Linear velocity

  • direction of velocity=direction of displacement

  • components

    • v=[vx , vy] = [ dx/dt , dy/dt]

  • direction of the component velocity

    • positive: rightward/upward motion

    • negative: Leftward/downward motion

<ul><li><p>direction of velocity=direction of displacement </p></li><li><p>components </p><ul><li><p>v=[v<sub>x</sub> , v<sub>y</sub>] = [ d<sub>x</sub>/dt , d<sub>y</sub>/dt]</p></li></ul></li><li><p>direction of the component velocity </p><ul><li><p>positive: rightward/upward motion </p></li><li><p>negative: Leftward/downward motion</p></li></ul></li></ul><p></p>
21
New cards

Average vs. Instantaneous

Length of time interval

  • dt (infinitesimal 𐤃t) —→ instant

  • v(bar)= d//𐤃t v1= d1/dt1

Instantaneous v reflects the actual motion

  • instant. speed = magnitude of instant velocity

constant velocity motion

  • v (bar)=v

<p>Length of time interval</p><ul><li><p>dt (infinitesimal 𐤃t) —→ instant </p></li><li><p>v(bar)= d//𐤃t      v<sub>1</sub>= d<sub>1</sub>/dt<sub>1</sub></p></li></ul><p>Instantaneous v reflects the actual motion </p><ul><li><p>instant. speed = magnitude of instant velocity </p></li></ul><p>constant velocity motion </p><ul><li><p>v (bar)=v</p></li></ul><p></p>
22
New cards

Zero velocity

  • Average v=0

    • no displacement=no net motion

  • instantaneous v=0

    • zero instant speed= not moving

    • constant position

basically average v can move around but it then goes back to the original point and shows there was no displacement. instantaneous does not have enough time to move so you stay in the same spot

<ul><li><p>Average v=0 </p><ul><li><p>no displacement=no net motion</p></li></ul></li><li><p>instantaneous v=0</p><ul><li><p>zero instant speed= not moving </p></li><li><p>constant position </p></li></ul></li></ul><p>basically average v can move around but it then goes back to the original point and shows there was no displacement. instantaneous does not have enough time to move so you stay in the same spot </p>
23
New cards

EX a swimmer

knowt flashcard image
24
New cards
<p>EX another swimmer </p>

EX another swimmer

knowt flashcard image
25
New cards

Velocity in cyclic movement

v= Cycle Length * Cycle Frequency(rate)

  • running: Stride Length (m/stride) * Stride Freq (stride/s)

  • Swimming: Stroke length (m/stroke) * Stroke F (stroke/s)

<p>v= Cycle Length * Cycle Frequency(rate) </p><ul><li><p>running: Stride Length (m/stride) * Stride Freq (stride/s)</p></li><li><p>Swimming: Stroke length (m/stroke) * Stroke F (stroke/s)</p></li></ul><p></p>
26
New cards
<p>Linear Acceleration </p>

Linear Acceleration

Acceleration

  • rate of change in linear speed or velocity

Scalar acceleration

  • change in speed/ elapsed time

    • a(bar)= 𐤃v/𐤃t= v2-v1/t2-t1

    • a= dv/dt = v2-v1/t2-t1

  • positive acceleration= speeding up

  • negative acceleration= slowing down

27
New cards

Vector acceleration

  • change in velocity/elapsed time

    • a(bar)= 𐤃v/ 𐤃t= v2-v1/ 𐤃t a= dv/dt=v2-v1/ dt

  • Components

    • a=[ax , ay]= [dvx/dt , dvy/dt]

<ul><li><p>change in velocity/elapsed time </p><ul><li><p>a(bar)=  𐤃v/ 𐤃t= v<sub>2</sub>-v<sub>1</sub>/ 𐤃t           a= dv/dt=v<sub>2</sub>-v<sub>1</sub>/ dt  </p></li></ul></li><li><p>Components </p><ul><li><p>a=[a<sub>x</sub> , a<sub>y</sub>]= [dv<sub>x</sub>/dt , dv<sub>y</sub>/dt]</p></li></ul></li></ul><p></p>
28
New cards

Vector acceleration continued

  • Positive component acceleration

    • speed up of positive velocity

    • slow down of negative velocity

    • ax>0 ay>0

  • Negative component acceleration

    • slow down of positive velocity

    • speed up of negative velocity

    • ax<0 ay<0

<ul><li><p>Positive component acceleration </p><ul><li><p>speed up of positive velocity </p></li><li><p>slow down of negative velocity</p></li><li><p>a<sub>x</sub>&gt;0      a<sub>y</sub>&gt;0</p></li></ul></li><li><p>Negative component acceleration </p><ul><li><p>slow down of positive velocity </p></li><li><p>speed up of negative velocity </p></li><li><p>a<sub>x</sub>&lt;0     a<sub>y</sub>&lt;0</p></li></ul></li></ul><p></p>
29
New cards

projectile motion

a=[ax , ay]

units in m/s2

horizontal velocity stays the same while vy slows down and speeds up

<p>a=[a<sub>x</sub> , a<sub>y</sub>] </p><p>units in m/s<sup>2</sup></p><p>horizontal velocity stays the same while v<sub>y </sub>slows down and speeds up</p>
30
New cards

zero acceleration

  • zero average a= no net change in velocity (initial v=final v)

  • zero instantaneous a= constant velocity

a(bar)= 𐤃v/𐤃t=v2-v1/ 𐤃t= 0 a= dv/dt=v2-v1/ dt= 0

𐤃v=0 and dv=0

31
New cards

causes of acceleration

  • changes in magnitude of velocity( speed)

  • change in direction of velocity

(tangential acceleration is the straight lines and radial acceleration is the other one)

<ul><li><p>changes in magnitude of velocity( speed)</p></li><li><p>change in direction of velocity</p></li></ul><p>(tangential acceleration is the straight lines and radial acceleration is the other one)</p>