substitute cos(2x) with
cos²x-sin²x
substitute sinxcosx with
½sin(2x)
substitute sin(2x) with
2sinxcosx
substitute sin²x with (name both)
½(1-cos(2x))
1-cos²x
substitute cos²x with (name both)
½(1+cos(2x))
1-sin²x
Strategy for integrating even powers of sin and cos
Use half angle identities
sin²x = ½(1 − cos(2x))
cos²x = ½(1 + cos(2x))
sin(2x) = 2sinxcosx
Strategy for even powers of sec
1.) Factor out a sec²x.
2.) Replace the remaining even powers of secant using sec²x = 1 + tan²x
3.) Let u = tanx and integrate.
Strategy for odd powers of sin
1.) Factor out one power of sine.
2.) Replace the remaining even powers of sine using sin²x = 1 − cos²x
3.) Let u = cosx and integrate.
Strategy for odd powers of cos
1.) Factor out one power of cosine.
2.) Replace the remaining even powers of sine using cos²x = 1 − sin²x
3.) Let u = sinx and integrate.
Strategy for odd powers of tan
1.) Factor out a secxtanx.
2.) Replace the remaining powers of tangent using tan²x = sec²x − 1
3.) Let u = secx and integrate.
∫b^x
b^x/lnb
∫secx dx
ln|secx+tanx|+C
∫cscx dx
ln|cscx-cotx|+C
∫tanx dx
ln|secx|+C
∫cotx dx
ln|sinx|+C
∫csc²x dx
-cotx + C
graph of sinx
graph of cosx
graph of tanx