substitute cos(2x) with
cosĀ²x-sinĀ²x
substitute sinxcosx with
Ā½sin(2x)
substitute sin(2x) with
2sinxcosx
substitute sinĀ²x with (name both)
Ā½(1-cos(2x))
1-cosĀ²x
substitute cosĀ²x with (name both)
Ā½(1+cos(2x))
1-sinĀ²x
Strategy for integrating even powers of sin and cos
Use half angle identities
sinĀ²x = Ā½(1 ā cos(2x))
cosĀ²x = Ā½(1 + cos(2x))
sin(2x) = 2sinxcosx
Strategy for even powers of sec
1.) Factor out a secĀ²x.
2.) Replace the remaining even powers of secant using secĀ²x = 1 + tanĀ²x
3.) Let u = tanx and integrate.
Strategy for odd powers of sin
1.) Factor out one power of sine.
2.) Replace the remaining even powers of sine using sinĀ²x = 1 ā cosĀ²x
3.) Let u = cosx and integrate.
Strategy for odd powers of cos
1.) Factor out one power of cosine.
2.) Replace the remaining even powers of sine using cosĀ²x = 1 ā sinĀ²x
3.) Let u = sinx and integrate.
Strategy for odd powers of tan
1.) Factor out a secxtanx.
2.) Replace the remaining powers of tangent using tanĀ²x = secĀ²x ā 1
3.) Let u = secx and integrate.
ā«b^x
b^x/lnb
ā«secx dx
ln|secx+tanx|+C
ā«cscx dx
ln|cscx-cotx|+C
ā«tanx dx
ln|secx|+C
ā«cotx dx
ln|sinx|+C
ā«cscĀ²x dx
-cotx + C
graph of sinx
graph of cosx
graph of tanx