1/67
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
which is identically equal to sec²(x)?
tan²(x)+1
sin²(x)+cos²(x)=
1
tan²(x)+1=
sec²(x)
1+cot²(x)=
csc²(x)
confunction identities
sin(pi/2-x)=cos(x)
cos(pi/2-x)=sin(x)
tan(pi/2-x)=cot(x)
tan(x)=
sin(x)/cos(x)
cot(x)=
cos(x)/sin(x)
Even identities
cos(-x)=cosx
sec(-x)=sec(x)
odd identities
sin(-x)=-sin(x)
csc(-x)=-csc(x)
tan(-x)=-tan(x)
cot(-x)=-cot(x)
which is identically equal to cot(x)?
cos(x)/sin(x)
which is identically equal to 1?
sin²(x)+cos²(x)
which is identically equal to tan(x)?
sin(x)/cos(x)
which is identically equal to 1-cos²(x)?
sin²(x)
which is identically equal to 1+csc²(x)cos²(x)?
csc²(x)
which is identically equal to 1-sec(x)cos³(x)?
sin²(x)
which is identically equal to 1+sec²(x)sin²(x)?
sec²(x)
determine if it is odd, even, or neither: cos(x)
even
determine if it is odd, even, or neither: sin(x)cos(x)
odd
determine if it is odd, even, or neither: sin²(x)
even
determine if it is odd, even, or neither: sin(x)+cos(x)
neither
true or false: sin(2t)=2sin(t)
false
true or false: tan(x) + cos(x)/1+sin(x)
false
true or false: (1-cos²B)(1+cot²B)=1
true
true or false: (sin(x)-cos(x))²=1
false
find the positive value of a and b for: tan²t - sin²t = sin^(a)t/cos^(b)t
sin(t) = 4
cos(t) = 2
use identities to simplify as much as possible: sec²(x)-1
(tan(x))²
use identities to simplify as much as possible: sin(x)tan(x)/cos(x)
(tan(x))²
use identities to simplify as much as possible: sec(x)cos(x)
1
find solution on the interval [0,2pi): 2=-2sinx+1
x=7pi/6, 11pi/6
find solution on the interval [0,2pi): 3cot³(x)-1=0
x=pi/3, 2pi/3, 4pi/3, 5pi/3
find solution on the interval [0,2pi): 5=2-4cosx
x=arccos(-3/4), 2pi-arccos(-3/4)
find solution on the interval [0,2pi): 2-2sin²x=1+cosx
x=0, 2pi/3, 4pi/3
find solution on the interval [0,2pi): 3tan(x/2)+3=0
x=3pi/2
find solution on the interval [0,2pi): tan²2x-2tan2x+1=0
x=pi/4, 5pi/4, 9pi/4, 13pi/4
find all solutions on the interval [0,2pi): 2cosx-1=0
x=pi/3, 5pi/3
find all solutions on the interval [0,2pi): sec4x-2=0
x=pi/12, 5pi/12, 7pi/12, 11pi/12
find all solutions on the interval [0,2pi): 2cos3x=1
x=pi/9, 5pi/9, 7pi/9, 11pi/9, 13pi/9
find all solutions on the interval [0,2pi): (cosx)(2sinx+1)=0
x=pi/2, 3pi/2, 7pi/6, 11pi/6
find all solutions on the interval [0,2pi): 2cos²(x)-cos(x)-1=0
x=0, 2pi/3, 4pi/3
find all solutions on the interval [0,2pi): 4sinxcosx+2sinx-2cosx-1=0
x= pi/6, 5pi/6, 2pi/3, 4pi/3
sum of angle identities: sin(a+b)
sin(a)sin(b)+cos(a)sin(b)
sum of angle identities: cos(a+b)
cos(a)cos(b)-sin(a)sin(b)
sum of angle identities: tan(a+b)
tan(a)+tan(b) / 1-tan(a)tan(b)
use sum of angle identities: cos75degrees
sqrt(6)-sqrt(2) / 4
use sum of angle identities: sin(pi/12_
sqrt(6)-sqrt(2) / 4
use sum of angle identities: sin(x+pi)
-sin(x)
use sum of angle identities: cos(x+3pi/2)
-sin(x)
use addition or subtraction identity to find the values of A and B:
sin(x+pi/6) = Asin(x)+Bcos(x)
A=sqrt(3)/2
B=1/2
use addition or subtraction identity to find the value of A:
sin(x-pi/2) = Acosx
-1
use addition or subtraction identity to find the values of A and B:
cos(3pi/7)cos(2pi/21)+sin(3pi/7)sin(2pi/21) = cos(pi/A) = B
A = 3
B = ½
use addition or subtraction identity to find the values of the trig expression:
(x+pi/6) + sin(x-pi/3)
0
use addition or subtraction identity to find the value of the trig expression:
sin(pi/12)
sqrt(6)-sqrt(2) / 4
use addition or subtraction identity to find the value of the trig expression:
sin(5pi/12)
sqrt(6)+sqrt(2) / 4
use addition or subtraction identity to find the value of the trig expression:
cos(3pi/8)
sqrt(2-sqrt(2)) / 2
use addition or subtraction identity to find the value of the trig expression:
cos(pi/12)
sqrt(2)+sqrt(6) / 4
law of sines
sin(a)/A = sin(b)/B = sin (c)/C
a=6, <C=60degrees, <A=55degrees:
find <B and side length b
<B = 65 degrees
side length b = 6.64
c=6, <C=120degrees, <B=50degrees:
find <A and side length a
<A = 10 degrees
side length a = 1.2034
distance BC = 220 ft, <B=115degrees, <C=27degrees.
what is the distance across the river?
162.2 ft
b=8, <C=120degrees, <A=40degrees:
find <B, side length a, and side length c
<B = 20
side length a = 15.05
side length c = 20.25
<A=50degrees, a=105, b=43:
A) how many triangles fit this data
B) find <B, <C and side length c
A) 1
B) <B = 18.3 degrees, <C = 111.7 degrees, side length c = 127.35
determine the number of triangles possible:
a=27,b=23,<A=35degrees
1
determine the number of triangles possible:
a=13, b=15, <A=52degrees
2
determine the number of triangles possible:
a=10.8, b=23, <A=42degrees
0
law of cosines
c²=a²+b²-2abcos(Y)
use law of cosines to solve:
<A=60degrees, b=4, Y=4
Find c, <a and B
c=2sqrt(7)
<a=79.11degrees
B=40.89degrees
use law of cosines to solve:
a=624, b=670, c=180
find <Y, <A, <B
<Y = 15.5 degrees
<A = 83.1 degrees
<B = 98.6 degrees