1/31
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
General Equation: Circle
(x-h)2+(y-k)2=r2
General Equation: Ellipse, Horizontal
(x-h)2/a2+(y-k)2/b2=1
General Equation: Ellipse, Vertical
(x-h)2/b2+(y-k)2/a2=1
Center: All Conics
(h,k)
Vertices: Ellipse, Horizontal
(h±a, k)
Vertices: Ellipse, Vertical
(h,k±b)
Covertices: Ellipse, Horizontal
(h,k±b)
Covertices: Ellipse, Vertical
(h±b, k)
Foci: Ellipse, Horizontal
(h±c, k) where c² = a² - b², a>b
Foci: Ellipse, Vertical
(h, k±c) where c² = a² - b², a>b
Length of Major Axis: Ellipse
2a
Length of Minor Axis: Ellipse
2b
General Equation: Hyperbola, Left/right
(x-h)²/a² - (y-k)²/b² = 1
General Equation: Hyperbola, Up/down
(y-k)²/a² - (x-h)²/b² = 1
Vertices: Hyperbola, Left/right
(h±a, k).
Vertices: Hyperbola, Up/down
(h, k±a).
Foci: Hyperbola, Left/right
(h±c, k), where c = √(a² + b²).
Foci: Hyperbola, Up/down
(h, k±c), where c = √(a² + b²).
Slant Asymptotes: Hyperbola, Left/right
y = k ± (b/a)(x - h).
Slant Asymptotes: Hyperbola, Up/down
y = k ± (a/b)(x - h).
Standard Form: Parabola, Up
(x-h)2=4p(y-k)
Standard Form: Parabola, Down
(x-h)2 = -4p(y-k)
Standard Form: Parabola, Left
(y-k)2 = -4p(x-h)
Standard Form: Parabola, Right
(y-k)2 = 4p(x-h)
Focus: Parabola, Up
(h, k+p)
Focus: Parabola, Down
(h, k-p)
Focus: Parabola, Right
(h+p, k)
Focus: Parabola, Left
(h-p, k)
Directrix: Parabola, Up
y = k-p
Directrix: Parabola, Down
y = k+p
Directrix: Parabola, Left
x = h+p
Directrix: Parabola, Right
x = h-p