1/3
Name | Mastery | Learn | Test | Matching | Spaced |
|---|
No study sessions yet.
Axioms of a metric space
$ d(x,y) \geq 0 $
d(x,y)=0 implies x=y
d(x,y) = d(y,x)
$ d(x,z) \leg d(x,y) + d(y,z) $
\$x^2 + y^2 = z^2\$
Discrete Metric
$ d_{0} = \begin{cases} 1 &\text{if \(x \neq y)\} \\ 0 &\text{ if \(x = y)\ /end{cases}
Standard Metric on R
d_2(x,y) = |x-y|
Euclidian Metric
d_2(x,y) = sqrt((