component form
Linear combination
u = Pi + qJ
Polar form
u = ||u||cosθi + ||u||sinθJ
magnitude formula
||u|| = √(P^2 + q^2)
unit vector
(P/||u||i) + (q/||u||J)
Reference angle
tan-1(q/P)
Dot product
u ⋅ v = (u1)(v1) + (u2)(v2)
c(u ⋅ v)
cu ⋅ v or u ⋅ cv
Angle between two vectors
cosθ = (u ⋅ v)/||u|| x ||v||
orthogonal vector
when u ⋅ v = 0 (perpendicular)
Trigonometric form
Z = a + bi
Multiplication of complex numbers
Z1×Z2 = r1×r2(cos(θ1 + θ2) + i sin(θ1 + θ2))
Division of complex numbers
Z1÷Z2 = r1÷r2(cos(θ1 - θ2) + sin(θ1 - θ2))
Exponents of complex numbers
Z^n = r^2(cosnθ + isinnθ)
root of complex numbers
u = r^(1/2)(cos(1/2)(θ +- 2πk) + isin(1/2)(θ +- 2πk))