1/73
UW Madison Stat Qual Prep Option B
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Theorem 1: Let X \subset R^d. Suppose that f: X \rightarrow R is non-negative and integrable. Then, …
There is a distribution P over X such that if x \sim P, for every A \subset X, we have \mathbb{P}(X \in A) = \int_{A} p(\textbf{x})d\textbf{x} where p(\textbf{x}) = \frac{f(\textbf{x})}{\int_Xf(\textbf{x})d\textbf{x}}
Bernoulli Density
p(x) = p^x(1-p)^{1-x} for x \in {0,1}
Bernoulli Expected Value
p
Bernoulli Variance
p(1-p)
Poisson Distribution Density
p(x) = \frac{\lambda^xe^{-\lambda}}{x!} for x \in \{0,1,\cdots\}
Poisson Expected Value
\lambda
Poisson Variance
\lambda
Gamma Function
\Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}dt
Gamma Function Properties
\Gamma(0) = \Gamma(1) = 1, \Gamma(x+1) = x\Gamma(x), \Gamma(n) = (n-1)! , \Gamma(1/2) = \sqrt{\pi}
Gamma Distribution Density
s,r > 0, p(x) = \frac{r^s}{\Gamma(s)}x^{s-1}e^{-rx} for x>0
Gamma Distribution Expected Value
s/r
Gamma Distribution Variance
s/r²
Beta Function
B(a,b) = \int_0^1 t^{a-1}(1-t)^{b-1}dt for a,b>0
Alternative Beta Function
B(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
Standard Normal Density
p(x) = (2\pi)^{-1/2}e^{-x²/2}
Standard Normal Expected Value
0
Standard Normal Variance
1
Basis of Monte Carlo Approximations
Approximation of probability based on random samples
Relation between marginal and joint distribution
Can determine marginal distributions exactly and uniquely from the joint density, but cannotdetermine unique and exact joint density from the marginals
Marginal Density
Integrate out all variables that we are not interested in
Negative Binomial Density
p(x) = {{x-1}\choose{r-1}} p^r(1-p)^{x-r} , x = # of trials until rth success with probability of success p in each trial
Negative Binomial Expected Value
r/p
Negative Binomial Variance
r(1-p)/p²
Negative Binomial MGF
\left [ \frac{pe^t}{1-(1-p)e^t} \right ]^r
Poisson MGF
\exp[\lambda(e^t-1)]
Normal MGF
\exp \left [ \mu t + \frac{t²\sigma²}{2} \right ]
Gamma MGF
(1-\beta t)^{-\alpha}
Normal Density
p(x) = (2\pi\sigma²)^{-1/2} \exp\left [ -(2\sigma²)^{-1}(x-\mu)² \right ]
Binomial Density
p(x) = {n\choose x} p^x (1-p)^x
Binomial Expected Value
np
Binomial Variance
np(1-p)
Binomial MGF
[pe^t + (1-p)]^n
Chi-Square Distribution
p(x) = \frac{x^{\nu/2 - 1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}
Chi Squared Mean
\nu
Chi Squared Variance
2\nu
Chi Squared MGF
(1-2t)^{-\nu/2}
P(A|B) =
P(A|B) = \frac{P(A\cap B)}{P(B)}
Bayes Rule: P(A|B) =
P(A|B) = P(B|A)\frac{P(A)}{P(B)}
Law of Total Probability
P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{\infty} P(B|A_j)P(A_j)}
Independence
P(A \cap B) = P(A)P(B) AND/OR P(A|B) = P(A)
Random Variable
Function from a sample space into the real numbers
Cumulative Distribution Function
F(x) = P(X \leq x)
Transformations: MGF method
Define U to be a function of n random variables.
m_U(t) = E[e^{tu}]
Match m_U(t) to mgfs of known distributions
If match, then U follows known distribution by uniqueness property of MGFs
Transformations: Method of Distribution Functions
We know Y is random var with CDF F_Y(y), and we are interested in distribution of U = h(y)
Find F_U(u) using F_Y(y), remember to adjust bounds!
Take derivative with respect to U to get f_U(u)
Transformations: Method of Transformations
NEED U = h(y) to be either increasing or decreasing
Find y = h^{-1}(u)
Substitute y = h^{-1}(u) into f_Y(y)
Multiply by \frac{dh^{-1}}{du} to find f_U(u)
IF U decreasing, take absolute value
Expected Value
weighted average
Moment Generating Function
M_X(t) = E[e^{tX}] , exists if there exists a constant b such that M_X(t) is finite for |t| \leq b
kth moment from MGF
\mu’_k = \frac{d^k m(t)}{dt^k}|_{t=0}
Exponential Family definition
f(x|\theta) = h(x)c(\theta)\exp\left( \sum_{i=1}^k w_i(\theta)t_i(x) \right) where h(x) \geq 0, c(\theta) \geq 0, t_1(x), \ldots, t_k(x), w_1(\theta),\ldots, w_k(\theta) real valued.
Location-Scale Family general idea
specify a single pdf as the “standard”, then generate any other pdf by transforming the standard in a prescribed way
Location-Scale Family definition
Let f(x) be any pdf. Then, the family of pdfs \frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right) is the location-scale family with standard pdf f(x), location parameter \mu, and scale parameter \sigma
Chebychev’s Inequality
Let X be a random variable and let g(x) be a nonnegative function. Then, for any r>0, P(g(X) \geq r) \leq E(g(X))/r
If X \sim Pois(\lambda) then P(X = x+1) =
P(X = x+1) = \frac{\lambda}{x+1}P(X=x)
Integration by Parts
\int udv = uv - \int vdu
Marginal Distribution of X
f(x) = \int_y f(x,y)dy
MGF of X+Y when X,Y independent
m_{X+Y}(t) = m_X(t)m_Y(t)
Covariance definition
Cov(X,Y) = E[(X-\mu_X)(Y-\mu_Y)]
Covariance shortcut
Cov(X,Y) = E(XY) - E(X)E(Y)
Cov(X+Y, Z) =
Cov(X+Y, Z) = Cov(X,Z) + Cov(Y,Z)
Correlation definition
Cor(X,Y) = \frac{Cov(X,Y)}{\sigma_X\sigma_Y}
Var(\sum a_ix_i) =
Var(\sum a_ix_i) = \sum a_i² Var(x_i) + 2\sum\sum_{i < j} a_ia_jCov(X_i, X_j)
X_1, X_2, \ldots converges in probability to a random variable X if
for every \epsilon > 0, \lim_{n\rightarrow\infty} P(|X_n - X| < \epsilon) = 1
Weak Law of Large Numbers
Let X_1, X_2, \ldots be iid random variables with E(X_i) = \mu, Var(X_i) = \sigma² < \infty . Then, for every \epsilon > 0, \lim_{n \rightarrow\infty}P(|\bar{X} - \mu| < \epsilon) = 1
Consistent estimator
estimator is consistent for a quantity if it converges in probability to the quantity
If X_1, X_2, \ldots converges in probability to RV X and h(x) is a continuous function, then
If X_1, X_2, \ldots converges in probability to RV X and h(x) is a continuous function, then h(X_1), h(X_2), \ldots converges in probability to RV h(X)
Convergence almost surely
A sequence of random variables X_1, X_2, \ldots such that for every \epsilon > 0, P(\lim_{n\rightarrow\infty}|X_n - X| < \epsilon) = 1
Strong Law of Large Numbers
Let X_1, X_2, \ldots be iid random variables with E(X_i) = \mu and Var(X_i) = \sigma²<\infty. Then for every \epsilon > 0, P(\lim_{n \rightarrow\infty}|\bar{X} - \mu| < \epsilon) = 1
Convergence in Distribution
A sequence of random variables X_1, X_2, \ldots, such that \lim_{n\rightarrow\infty} F_{X_n}(x) = F_X(x) at all points x where F_X(x) is continuous
Relationship between types of convergence
a.s. \rightarrow prob \rightarrow dist
Central Limit Theorem
Let X_1, X_2, \ldots be a sequence of iid random variables with E[X_i] = \mu and 0< Var(X_i) = \sigma² < \infty. Then, \sqrt{n}(\bar{X} - \mu)/\sigma converges in distribution to the N(0,1) distribution
Slutsky’s Theorem
If X_n \rightarrow X in distribution and Y_n \rightarrow a in probability where a is a constant, then
Y_nX_n \rightarrow aX in distribution
X_n + Y_n \rightarrow X + a in distribution
Delta Method general use
When we are interested in the distribution of some function of a random variable
rth order Taylor Expansion about a
T_r(x) = \sum_{i=1}^r \frac{g^{(i)}(a)}{i!}(x-a)^i
Delta Method
Let Y_n be a sequence of ranomd variables that satisfies \sqrt{n}(Y_n - \theta) \rightarrow N(0,\sigma²) in distribution. For a given function g and a specific value of \theta, suppose that g’(\theta) exists and is nonzero. Then,
\sqrt{n}|g(Y_n) - g(\theta)| \rightarrow N(0,\sigma²[g’(\theta)]²) in distribution