1/51
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
When do you apply L’Hopital?
For indeterminate forms
0-∞
not indeterminate
∞+∞
not indeterminate
0×1
not indeterminate
∞^∞
not indeterminate
∞/∞
indeterminate
0/0
indeterminate
∞^0
indeterminate
1^∞
indeterminate
0*∞
indeterminate
0^0
indeterminate
0/∞
not indeterminate
∞+∞
not indeterminate
∞-∞
indeterminate
1*∞
not indeterminate
How do you find the inflection points?
f”(x)=0
f(x) is continuous on the closed interval [a,b] then…
it’s differentiable on (a,b) and integrable on [a,b]
Cube
Volume: s³ Surface Area: 6s²
Rectangle Prism + Rectangle
Volume: LWH Surface Area: 2LH+2LW+2WH
A: LW Perimeter: 2(L+W)
Cone
Volume: 1/3π r²h
Surface Area: πr(r+√h²+r²)
Triangular Prism
Volume: BH Surface Area: 2HB+B²
Triangle
Area: ½BH
Cylinder
Volume: πr²h Surface Area: 2πrH+2πr²
Sphere
Volume: 4/3 πr³
Surface Area: 4πr³
f’(x)=cosx
-sinx
f’(x)=sinx
cosx
f’(x)=tanx
sec²x
f’(x)=cot
-csc²x
f’(x)=secx
secxtanx
f’(x)=cscx
-cscxcotx
d/dx(arcsinx)
1/√(1-x²)
d/dx(arccosx)
-1/√1-x²
d/dx(arctanx)
1/(1+x²)
d/dx(arccotx)
-1/(1+x²)
d/dx(arcsecx)
1/(|x|√x²-1)
d/dx(arccscx)
-1/(|x|√1-x²)
turn tan(x) into
sin(x)/cos(x)
f(x)=x³ (-inf,inf)
no abs. max/min
f(x)=1/x²+1 (-inf,inf)
abs max no abs mini
f(x)=tan(x) (-pi/2,pi/2)
no abs max/min
Extreme Value Theorem
f is continous [a,b], there is a point within it that has an abs max and abs min
Fermat’s Theorem
If f has a local extremum at c and f differentiable at c means f’©=0 or f’©=Undef
Local extrema at f’©=Undef
-abs value x
-cusp
semi circle
Area: πr2/2
Perimeter: πr+2r
No local extrema at f’©=0
x³ with f’©=0 being horizontal
No local extrema at f’©=Undefined
∛x f’©=Undef horizontal
What’s this
ln(x) and e^x function graph
What’s this
f(x)=√x sq root function graph
What’s this
f(x)=∛x cube root function graph
What’s this
f(x)=1/x reciprocal function graph
What’s this
f(x)=1/x² rational function graph
Graph equation for a circle
x²+y²=r²