Week 6: The Nervous System

0.0(0)
studied byStudied by 0 people
call kaiCall Kai
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
GameKnowt Play
Card Sorting

1/24

encourage image

There's no tags or description

Looks like no tags are added yet.

Last updated 9:30 AM on 5/21/25
Name
Mastery
Learn
Test
Matching
Spaced
Call with Kai

No analytics yet

Send a link to your students to track their progress

25 Terms

1
New cards

What are the 3 Basic Functions of the Nervous System?

  1. Sensory - Sensory receptors detect changes in the environment.

  1. Integration - Input is processed so that the system (brain) can decide on what to do.

  1. Motor Output - Response initiated which then activates the body’s muscles and glands.

<ol><li><p><strong>Sensory </strong>- Sensory receptors detect changes in the environment.</p></li></ol><p></p><ol start="2"><li><p><strong>Integration</strong> - Input is processed so that the system (brain) can decide on what to do.</p></li></ol><p></p><ol start="3"><li><p><strong>Motor Output </strong>- Response initiated which then activates the body’s muscles and glands. </p></li></ol><p></p>
2
New cards

Name and describe the Divisions of the Nervous System:

knowt flashcard image
3
New cards

Name and Describe what the Nervous System is made of? Name the 3 Functional Neurons:

  1. Neurons

    • Communication

    • Processes information

    • Control functions

  1. Neuroglia (Glial Cells)

    • Supporting cells

Functional Neurons:

  1. Motor Neurons - CNS sends signal to targeted muscles or glands.

  2. Sensory Neurons - Send sensory information to the CNS.

  3. Interneurons - Located in the CNS. They connect sensory neurons to motor neurons.

4
New cards

Name and describe the 6-Types of Neuroglia:

CNS

  1. Astrocytes

    • Maintain blood-brain barrier.

    • Regulate nutrient and ion balance.

    • Provide structural support.

    • Repair damaged tissue (scar formation).

  1. Ependymal Cells

    • Line brain ventricles and spinal cord central canal.

    • Produce and circulate cerebrospinal fluid (CSF).

  1. Oligodendrocytes

    • Form myelin sheath around CNS axons.

    • Provide structural framework.

  1. Microglia

    • Immune cells of the CNS.

    • Remove waste and pathogens (phagocytosis).

    • Activated during injury or disease.

PNS

  1. Satellite Cells

    • Surround neuron cell bodies in PNS ganglia.

    • Regulate O2 and CO2, nutrient, and neurotransmitter levels around in ganglia.

  2. Schwann Cells

    • Form myelin sheath around PNS axons.

    • Aid in axon regeneration.

<p><strong>CNS</strong></p><ol><li><p><strong>Astrocytes</strong></p><ul><li><p>Maintain blood-brain barrier.</p></li><li><p>Regulate nutrient and ion balance.</p></li><li><p>Provide structural support.</p></li><li><p>Repair damaged tissue (scar formation).</p></li></ul></li></ol><p></p><ol start="2"><li><p><strong>Ependymal Cells</strong></p><ul><li><p>Line brain ventricles and spinal cord central canal.</p></li><li><p>Produce and circulate cerebrospinal fluid (CSF).</p></li></ul></li></ol><p></p><ol start="3"><li><p><strong>Oligodendrocytes</strong></p><ul><li><p>Form myelin sheath around CNS axons.</p></li><li><p>Provide structural framework.</p></li></ul></li></ol><p></p><ol start="4"><li><p><strong>Microglia</strong></p><ul><li><p>Immune cells of the CNS.</p></li><li><p>Remove waste and pathogens (phagocytosis).</p></li><li><p>Activated during injury or disease.</p></li></ul></li></ol><p></p><p><strong>PNS</strong></p><ol start="5"><li><p><strong>Satellite Cells</strong></p><ul><li><p>Surround neuron cell bodies in PNS ganglia.</p></li><li><p>Regulate O2 and CO2, nutrient, and neurotransmitter levels around in ganglia. </p></li></ul></li><li><p><strong>Schwann Cells</strong></p><ul><li><p>Form myelin sheath around PNS axons.</p></li><li><p>Aid in axon regeneration.</p><p></p></li></ul></li></ol><p></p>
5
New cards
<p>Name and describe the Structures of a Neuron:</p>

Name and describe the Structures of a Neuron:

  1. Dendrites - Receives electrical signal from other neurons.

  1. Soma (Cell Body) - Holds the Nucleus and supports cell function.

  1. Nucleus - Holds DNA and controls function and repair.

  1. Axon - Long fibre that transmits electrical signal.

  1. Myelin Sheath - Insulates axon and speeds process. Made from Oligodendrocytes (CNS) and Schwann Cells (PNS).

  1. Axon Terminal - Releases neurotransmitter to synapse.

  1. Synapse - The gap between 2 neurons.

  1. Post-Synaptic Cell - The neuron (muscle or gland) receives neurotransmitter. Has receptors to detect/respond to chemical message.

<ol><li><p><strong>Dendrites </strong>- Receives electrical signal from other neurons.</p></li></ol><p></p><ol start="2"><li><p><strong>Soma (Cell Body)</strong> - Holds the Nucleus and supports cell function.</p></li></ol><p></p><ol start="3"><li><p><strong>Nucleus </strong>- Holds DNA and controls function and repair.</p></li></ol><p></p><ol start="4"><li><p><strong>Axon</strong> - Long fibre that transmits electrical signal. </p></li></ol><p></p><ol start="5"><li><p><strong>Myelin Sheath </strong>- Insulates axon and speeds process. Made from Oligodendrocytes (CNS) and Schwann Cells (PNS). </p></li></ol><p></p><ol start="6"><li><p><strong>Axon Terminal </strong>- Releases neurotransmitter to synapse.</p></li></ol><p></p><ol start="7"><li><p><strong>Synapse </strong>- The gap between 2 neurons.</p></li></ol><p></p><ol start="8"><li><p><strong>Post-Synaptic Cell </strong>- The neuron (muscle or gland) receives neurotransmitter. Has receptors to detect/respond to chemical message.</p></li></ol><p></p>
6
New cards

What is an Electrical Synapse?

  • Cytoplasmic continuity between two neurons (like a bridge). It’s called a Gap Junction (connexons).

  • Fast messaging

    • e.g., reflexes

<ul><li><p>Cytoplasmic continuity between two neurons (like a bridge). It’s called a Gap Junction (connexons).</p></li><li><p>Fast messaging</p><ul><li><p>e.g., reflexes</p></li></ul></li></ul><p></p>
7
New cards

What is a Chemical Synapse?

  • Instead of a Gap Junction it releases a chemical, ‘neurotransmitters’ into the Synaptic Cleft.

  • Neurotransmitters float across the Synaptic Cleft and enter a post-synaptic cell.

  • Slow/controlled

    • e.g., Neuromuscular Junction

<ul><li><p>Instead of a Gap Junction it releases a chemical, ‘neurotransmitters’ into the Synaptic Cleft.</p></li><li><p>Neurotransmitters float across the Synaptic Cleft and enter a post-synaptic cell.</p></li><li><p>Slow/controlled</p><ul><li><p>e.g., Neuromuscular Junction</p></li></ul></li></ul><p></p>
8
New cards
<p>Name the Structures of the Chemical Synapse:</p>

Name the Structures of the Chemical Synapse:

  1. Pre-Synaptic Vesicle

  2. Mitochondria

  3. Post-Synaptic Neuron

  4. Pre-Synaptic Vesicle (Pre-Synaptic Membrane)

  5. Synaptic Cleft

<ol><li><p>Pre-Synaptic Vesicle</p></li><li><p>Mitochondria</p></li><li><p>Post-Synaptic Neuron</p></li><li><p>Pre-Synaptic Vesicle (Pre-Synaptic Membrane)</p></li><li><p>Synaptic Cleft</p></li></ol><p></p>
9
New cards

Describe the Process of Chemical Synapse and Name the Ion Channels:

  1. In the pre-synaptic cell, the electrical signal travels via the axon to the axon terminals.

  2. Action potential

  3. The voltage charged Ca2+ (calcium) channels open (Active: Electrical - Voltage Channel).

  4. Ca2+ enters the channels and enter the axon terminal.

  5. The Ca2+ enter pre-synaptic vesicles.

  6. The vesicles hold neurotransmitters.

  7. The vesicles fuse with the pre-synaptic membrane for exocytosis (exit).

  8. The neurotransmitters travel through the synaptic cleft.

  9. The neurotransmitters enter post-synaptic receptors and bind.

  10. Ion channels (Active: Chemical - Ligand Channel) open.

  11. Graded Potential

<ol><li><p>In the pre-synaptic cell, the electrical signal travels via the axon to the axon terminals.</p></li><li><p>Action potential</p></li><li><p>The voltage charged Ca2+ (calcium) channels open (<strong>Active: Electrical - Voltage Channel</strong>).</p></li><li><p>Ca2+ enters the channels and enter the axon terminal.</p></li><li><p>The Ca2+ enter pre-synaptic vesicles.</p></li><li><p>The vesicles hold neurotransmitters.</p></li><li><p>The vesicles fuse with the pre-synaptic membrane for exocytosis (exit).</p></li><li><p>The neurotransmitters travel through the synaptic cleft.</p></li><li><p>The neurotransmitters enter post-synaptic receptors and bind.</p></li><li><p>Ion channels (<strong>Active: Chemical  - Ligand Channel</strong>) open.</p></li><li><p>Graded Potential</p></li></ol><p></p>
10
New cards

What does ‘Resting Membrane Potential’ Mean?

  • The neuron is at rest (not sending an electrical signal).

  • Polarised - Exterior is positively charged and interior is negatively charged.

    • Uneven distribution of ions (like Na⁺ and K⁺) and the work of the sodium-potassium pump.

<ul><li><p>The neuron is at rest (not sending an electrical signal).</p></li><li><p>Polarised - Exterior is positively charged and interior is negatively charged.</p><ul><li><p>Uneven distribution of ions (like <strong>Na⁺</strong> and <strong>K⁺</strong>) and the work of the sodium-potassium pump.</p></li></ul></li></ul><p></p>
11
New cards

What are Ion Channels? Give examples:

  • Tiny gates in the neuron’s membrane.

  • They open and close ions like Na⁺ (sodium), K⁺ (potassium), or Ca²⁺ (calcium) pass in or out.

  • When they open, they can change the charge inside the neuron.

  • Passive channels

  • Active channels

    • Chemically gated (ligand gated)

    • Mechanically gated

    • Voltage gated (electrical signal)

      • e.g., Ca2+ Voltage Charged Channel

<ul><li><p>Tiny gates in the neuron’s membrane.</p></li><li><p>They open and close ions like Na⁺ (sodium), K⁺ (potassium), or Ca²⁺ (calcium) pass in or out.</p></li><li><p>When they open, they can change the charge inside the neuron.</p></li><li><p>Passive channels</p></li><li><p>Active channels</p><ul><li><p>Chemically gated (ligand gated)</p></li><li><p>Mechanically gated</p></li><li><p>Voltage gated (electrical signal)</p><ul><li><p>e.g., Ca2+ Voltage Charged Channel </p></li></ul></li></ul></li></ul><p></p>
12
New cards

What does ‘Graded Potential’ Mean? Also, Name and Describe it’s Polarisation:

  • A small change in the neuron’s charge.

  • Happens when a few ion channels open, usually near the dendrites or cell body.

  • Can be strong or weak — the size of the signal depends on the strength of the stimulus.

  • If the graded potential is strong enough and reaches the axon hillock, it may trigger an action potential (e.g., a full nerve signal).

  • If a stimulus opens ion channels:

    • If Na⁺ enters → the inside becomes less negative → this is called depolarisation.

    • If Cl⁻ (chloride ion) enters or K⁺ leaves → the inside becomes more negative → this is hyperpolarisation.

  • These changes are temporary and vary in strength — hence the term graded.

13
New cards

What does ‘at rest’ Mean?

  • Polarised

  • The inside of the neuron is more negative than the outside.

  • Both Na+ and K+ channels are closed.

  • The neuron is ready to fire but not active (action potential).

14
New cards

What is Depolarisation?

  • The inside becomes less negative and more positive.

  • Na+ channels open allowing Na+ entry, K+ channels are closed.

  • Can lead to an action potential if it reaches the threshold.

15
New cards

What is Hyperpolarisation?

  • The inside becomes more negative than the resting state.

  • Caused by K+ leaving or Cl- entering the cell.

  • Makes the neuron less likely to fire.

16
New cards

What is Repolarisation?

  • The neuron returns to its resting state after depolarisation.

  • K+ leaves the cell to restore the negative charge inside.

  • Happens after an action potential to reset the membrane.

17
New cards

What are Ions? Give some Examples:

  • Positive charged particles.

  • Can change the charge of a neuron.

    • e.g.,

      • Na+ (Sodium)

      • K+ (Potassium)

      • Ca2+ (Calcium)

18
New cards

Name and Describe the Protective Mechanisms of the Brain?

  1. Bone Exterior: Skull and Vertebral Column

    Skull:

    • Hard

    • Boney

    • Encases the Brain.

    Vertebral Column:

    • Protects Spinal Cord

  1. Meninges (3-Layers)

    1. Dura Mater

      • Tough and thick outer layer.

      • Attached to the inner surface of the skull.

    2. Arachnoid Mater

      • Web-like middle layer.

      • Contains spaces where (cerebrospinal fluid) CSF flows.

    3. Pia Mater

      • Thin, delicate layer that clings tightly to the brain surface.

      • Carries blood vessels into brain tissue.

  2. Cerebrospinal Fluid (CSF)

    • Clear fluid that circulates the arachnoid and pia mater, and within the brain’s ventricles.

    • Cushions the brain.

    • Removes waste and delivers nutrients.

  3. Blood-Brain Barrier (BBB)

    • Selective filter made of tight junctions between brain capillary cells.

    • Protects the brain from pathogens.

    • Allows essential molecules to pass through (e.g., oxygen, glucose, medications).

19
New cards
<p>Identify and Describe the Meninges: </p>

Identify and Describe the Meninges:

  1. Meninges (3-Layers)

    1. Dura Mater

      • Tough and thick outer layer.

      • Attached to the inner surface of the skull.

    2. Arachnoid Mater

      • Web-like middle layer.

      • Contains spaces where (cerebrospinal fluid) CSF flows.

    3. Pia Mater

      • Thin, delicate layer that clings tightly to the brain surface.

      • Carries blood vessels into brain tissue.

<ol start="2"><li><p><strong>Meninges (3-Layers)</strong></p><ol><li><p><strong>Dura Mater</strong></p><ul><li><p>Tough and thick outer layer.</p></li><li><p>Attached to the inner surface of the skull.</p><p></p></li></ul></li><li><p><strong>Arachnoid Mater</strong></p><ul><li><p>Web-like middle layer.</p></li><li><p>Contains spaces where (cerebrospinal fluid) CSF flows.</p></li></ul><p></p></li><li><p><strong>Pia Mater</strong></p><ul><li><p>Thin, delicate layer that clings tightly to the brain surface.</p></li><li><p>Carries blood vessels into brain tissue.</p></li></ul></li></ol></li></ol><p></p>
20
New cards
<p>Identify and Describe (Positioning) the Structures of the Brain:</p>

Identify and Describe (Positioning) the Structures of the Brain:

  1. Frontal Lobe

    • Judgement

    • Reasoning

    • Personality

    • Voluntary Movement - contains Primary Motor Cortex

      • Anterior surface of the brain.

      • Anterior to Central Sulcus.

  1. Parietal Lobe

    • Sensory information (e.g., pain ,touch, temperature).

      • Superior surface

      • Posterior to Frontal lobe.

      • Posterior to Central Sulcus.

  1. Occipital Lobe

    • Interpretation of visual patterns (eyes).

      • Most posterior aspect of the cerebrum.

  1. Temporal Lobe

    • Hearing

    • Language

      • Lateral surface of Cerebrum.

      • Inferior to Lateral Sulci.

  1. Cerebellum

    • Coordinating movement

    • Balance

    • Posture

      • Inferior and posterior to the Occipital Lobe

  1. Central Sulcus

    • Separates the Frontal and Parietal Lobes.

    • Defines the Primary Motor Cortex (skeletal muscle) and Primary Somatosensory Cortex (senses).

<ol><li><p><strong>Frontal Lobe</strong></p><ul><li><p>Judgement</p></li><li><p>Reasoning</p></li><li><p>Personality</p></li><li><p>Voluntary Movement - contains Primary Motor Cortex</p><ul><li><p>Anterior surface of the brain.</p></li><li><p>Anterior to Central Sulcus. </p></li></ul></li></ul></li></ol><p></p><ol start="2"><li><p><strong>Parietal Lobe</strong></p><ul><li><p>Sensory information (e.g., pain ,touch, temperature).</p><ul><li><p>Superior surface</p></li><li><p>Posterior to Frontal lobe.</p></li><li><p>Posterior to Central Sulcus.</p></li></ul></li></ul></li></ol><p></p><ol start="3"><li><p><strong>Occipital Lobe</strong></p><ul><li><p>Interpretation of visual patterns (eyes).</p><ul><li><p>Most posterior aspect of the cerebrum.</p></li></ul></li></ul></li></ol><p></p><ol start="4"><li><p><strong>Temporal Lobe</strong></p><ul><li><p>Hearing</p></li><li><p>Language </p><ul><li><p>Lateral surface of Cerebrum.</p></li><li><p>Inferior to Lateral Sulci.</p></li></ul></li></ul></li></ol><p></p><ol start="5"><li><p><strong>Cerebellum</strong></p><ul><li><p>Coordinating movement</p></li><li><p>Balance</p></li><li><p>Posture</p><ul><li><p>Inferior and posterior to the Occipital Lobe</p></li></ul></li></ul></li></ol><p></p><ol start="6"><li><p><strong>Central Sulcus</strong></p><ul><li><p>Separates the Frontal and Parietal Lobes.</p></li><li><p>Defines the Primary Motor Cortex (skeletal muscle) and Primary Somatosensory Cortex (senses).  </p></li></ul></li></ol><p></p>
21
New cards
<p>Name and Describe the Brain’s Structures:</p>

Name and Describe the Brain’s Structures:

  1. Cerebellum: Balance, posture, and fine motor movement.

  2. Hypothalamus: Homeostasis and links the Nervous System and Endocrine System via the Pituitary Gland.

  3. Pons: Breathing regulation and communication between the cerebrum and cerebellum.

  4. Medulla Oblongata: Vital automatic functions (e.g., heart rate, breathing).

  5. Corpus Callosum: Thick band of fibres that connect the left and right cerebral hemispheres.

  6. Thalamus: Sends sensory signals to the right areas of the cerebral cortex.

<ol><li><p><strong>Cerebellum: </strong>Balance, posture, and fine motor movement.</p><p></p></li><li><p><strong>Hypothalamus: </strong>Homeostasis and links the Nervous System and Endocrine System via the Pituitary Gland.</p><p></p></li><li><p><strong>Pons: </strong>Breathing regulation and communication between the cerebrum and cerebellum.</p><p></p></li><li><p><strong>Medulla Oblongata: </strong>Vital automatic functions (e.g., heart rate, breathing).</p><p></p></li><li><p><strong>Corpus Callosum: </strong>Thick band of fibres that connect the left and right cerebral hemispheres.</p><p></p></li><li><p><strong>Thalamus: </strong>Sends sensory signals to the right areas of the cerebral cortex.</p></li></ol><p></p>
22
New cards

What is Grey and White Matter?

Grey Matter:

  • Made up of neuronal cell bodies, dendrites, and synapses.

  • Processing and decision-making (e.g., thinking, memory, sensory input).

White Matter:

  • Made up of axons covered in myelin (makes it look white).

  • Carries signals between grey matter regions.

<p><strong>Grey Matter:</strong></p><ul><li><p>Made up of neuronal cell bodies, dendrites, and synapses.</p></li><li><p>Processing and decision-making (e.g., thinking, memory, sensory input).</p></li></ul><p></p><p><strong>White Matter:</strong></p><ul><li><p>Made up of axons covered in myelin (makes it look white).</p></li><li><p>Carries signals between grey matter regions.</p></li></ul><p></p>
23
New cards
<p>Name and Describe the Spinal Cord:</p>

Name and Describe the Spinal Cord:

  1. Dorsal Root Ganglia: Processes incoming sensory information (e.g., touch, pain).

  2. Dorsal Root: Carries sensory information into the spinal cord.

  3. Ventral Root: Carries motor information (voluntary) out of the spinal cord.

<ol start="7"><li><p><strong>Dorsal Root Ganglia: </strong>Processes incoming sensory information (e.g., touch, pain).</p><p></p></li><li><p><strong>Dorsal Root: </strong>Carries sensory information into the spinal cord.</p><p></p></li><li><p><strong>Ventral Root: </strong>Carries motor information (voluntary) out of the spinal cord.</p></li></ol><p></p>
24
New cards

Classification of Neurons

25
New cards

Describe the Differences of the Somatic and Automatic System:

Somatic:

  • Voluntary

  • Motor Cortex

  • Skeletal muscle

Autonomic:

  • Involuntary

  • Hypothalamus, brain stem

  • Smooth, cardiac muscle, glands.