1/85
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
sin (θ) is
opposite/hypotenuse && y-coordinate/radius
cos (θ) is
adjacent/hypotenuse && x-coordinate/radius
tan (θ) is
opposite/adjacent && y-coordinate/x-coordinate
cot (θ) is
adjacent/opposite && 1/[tan (θ)] && x-coordinate/y-coordinate
csc (θ) is
hypotenuse/opposite && 1/[sin (θ)] && radius/y-coordinate
sec (θ) is
hypotenuse/adjacent && 1/[cos (θ)] && radius/x-coordinate
sin (-θ)
-sin (θ)
cos (-θ)
cos (θ)
sin (30)=cos (60)
1/2
sin (45)=cos (45)
√2/2
sin (60)=cos (30)
√3/2
cos (30)=sin (60)
√3/2
cos (45)=sin (45)
√2/2
cos (60)=sin (30)
1/2
tan (30)
√3/3
tan (45)
1
tan (60)
√3
cof: sin θ=
cos (90-θ)
cof: cos θ=
sin (90-θ)
cof: tan θ=
cot (90-θ)
cof: cot θ=
tan (90-θ)
cof: sec θ=
csc (90-θ)
cof: csc θ=
sec (90-θ)
coterminal
if two or more angles have the same terminal (ending) side, the angles are said to be coterminal.
To do this, add or subtract multiples of 360
positive rotation
counter clockwise
negative rotation
clockwise
Unit circle
Quadrants:
1(Positive: all, negative: none)
2(Positive: sin, negative: cos, tan)
3(Positive: tan, negative: sin, cos)
4(Positive: cos, negative: sin, tan)
sin (θ)=
90=1
180=0
270=-1
360=0
cos (θ)=
90=0
180=-1
270=0
360=1
tan (θ)=
90=undefined
180=0
270=undefined
360=0
Radian measure equation
θ=s/r
Basic circular functions
the arc lengths on the unit circle is the same as the radian measure of the angle θ
sin s =
second coordinate=y
cos s=
first coordinate=x
tan s=
second coordinate/first coordinate=y/x (x≠0)
csc s=
1/second coordinate=1/y (y≠0)
sec s=
1/first coordinate=1/x (x≠0)
cot s=
first coordinate/second coordinate=1/y (y≠0)
tan (-x)=
-tan x
(sin s)^2+(cos s)^2=
1
(csc s)^2-(cot s)^2=
1
(sec s)^2-(tan s)^2=
1
sin θ=
cos (pi/2-θ)
cos (u+v)=
(cos u)(cos v)-(sin u)(sin v)
cos (u-v)=
(cos u)(cos v)+(sin u)(sin v)
cos α=
sin (pi/2-α)
sin (u-v)=
(sin u)(cos v)-(cos u)(sin v)
sin (u+v)=
(sin u)(cos v)+(cos u)(sin v)
tan (u-v)=
[(tan u)-(tan v)]/[1+(tan u)(tan v)]
tan (u+v)=
[(tan u)+(tan v)]/[1-(tan u)(tan v)]
csc (-θ)=
-csc (θ)
cosecant graph
Period: 2pi
Domain: All real numbers except k(pi), where k is an integer
Range: (-∞, -1] U [1, ∞)
sine graph
Period: 2pi
Domain: All real numbers
Range: [-1, 1]
Amplitude: 1
Odd: sin(-s)=-sin s (goes from left to right up) origin: (0,0)
cosine graph
Period: 2pi
Domain: All real numbers
Range: [-1, 1]
Amplitude: 1
Even: cos(-s)=cos s Origin: (0,1)
tangent graph
Period: pi
Domain: All real numbers except (pi/2)+k(pi)
Range: All real numbers (right(down) to left (up))
cotangent graph
Period: pi
Domain: All real numbers except k(pi), where k is an integer
Range: All real numbers (right(up) to left (down))
secant graph
Period: 2pi
Domain: All real numbers except (pi/2)+k(pi), where k is an integer
Range: (-∞, -1] U [-1, ∞)
negative angle identities
sin(-X) = - sinX , odd function
csc(-X) = - cscX , odd function
cos(-X) = cosX , even function
sec(-X) = secX , even function
tan(-X) = - tanX , odd function
cot(-X) = - cotX , odd function
Double Angle identities
sin(2x)=2 sin x cos x
cos(2x)=(cos x)(cos x)-(sin x)(sin x)
tan(2x)=(2 tan x)/(1-tan^2 x)
Half Angle identities
sin x/2=±sqrt[(1-cos x)/2]
cos x/2=±sqrt[(1+cos x)/2]
tan x/2=±sqrt[(1-cos x)/(1+cos x)]
Inverse sine function
y=sin^-1 x
Domain: [-1,1] Range: [-pi/2, pi/2]
inverse cosine function
y=cos^-1 x
Domain: [-1,1] Range: [0,pi]
inverse tan function
y=tan^-1 x
Domain: (-∞,∞) Range: [-pi/2, pi]
sine compositions
sin(sin^-1 x)=x
sin^-1(sin x)=x
cosine compositions
cos(cos^-1 x)=x
cos^-1(cos x)=x
tan compositions
tan(tan^-1 x)=x
tan^-1(tan x)=x
Law of sines
a/sin(A)=b/sin(B)=c/sin(C)
Law of cosines
a^2=b^2+c^2-2bc(cos(A))
b^2=a^2+c^2-2ac(cos(B))
c^2=a^2+b^2-2ab(cos(C))
SSS, SAS
Law of cosines
ASA, AAS, SSA
Law of sines
AAA
Nothing, unsolvable
Absolute value of Complex Number
|a+bi|=sqrt(a^2+b^2)=r
Trigonometric Notation for Complex Numbers
a+bi=r(cos x+ i sin x)
sin x
b/r, b=r sin x
cos x
a/r, a=r cos x
Complex Numbers: Multiplication Trig Notation
r(cos x1 + i sin x1)*r2(cos x2+ i sin x2)
= r*r2(cos (x1+x2)+ i sin (x1+x2))
Complex Numbers: Division Trig Notation
r(cos x1+i sin x1)/r2(cos x2 + i sin x2)=
r/r2[cos (x1-x2)+ i sin(x1-x2)]
Demoivre's Theorem
For any complex number r(cos x + i sin x) and any natural number n,
[r(cos x + i sinx)]^n= r^n(cos nx+ i sin nx)
Roots of Complex Numbers
The nth roots of a complex numbers r(cos x+ i sin x), r !=0, are given by
r^(1/n)[cos (x/n+ k*360/n) + i sin (x/n+ k*360/n)]
where k=0, 1, 2, ....., n-1
convert polar coordinates
r=sqrt(x^2+y^2)
cos θ= x/r x=r cos θ
sin θ= y/r y=r sin θ
tan θ=y/x
convert equations
substitute r cos θ and r sin θ for x and y
and sqrt(x^2+y^2) for r
x-4+4y=y^2
Only one variable is squared, so this cannot be a circle, an ellipse or a hyperbola. Find an equivalent equation: x=(y-2)^2
This is the equation of a parabola
3x^2+3y^2=75
both variables are squared, so this cannot be a parabola. The squared terms are added, so this cannot be a hyperbola. Divide by 3 on bothsides to find an equivalent equation.
x^2+y^2=25, this is the equation of a circle.
y^2=16-4x^2
Both variables are squared so this cannot be a parabola. Add 4x^2 on bothsides to find an equivalent equation: 4x^2+y^2=16. The squared terms are added, so this cannot be a hyperbola. The coefficients of x^2 and y^2 are not the same, so this is not a circle. Divide by 16 on both side to find an equivalent equation.
x^2/4+y^2/16=1
Equation of an ellipse
x^2=4y^2+36
Both variables are squared, so this cannot be a parabola. Subtract 4y^2 on both sides to find an equivalent equation: x^2-4y^2=36. The squared terms are not added so this cannot be a circle or ellipse. Divide by 36 on both sides to find an equivalent equation.
x^2/36-y^2/9=1
This is the equation of a hyperbola.
rotation of axes (x)
x=x' cos θ- y'sin θ
x'=x cos θ+y sin θ
y=x' sin θ+y' cos θ
y'=-x sin θ+ y cos θ