Trigonometric Functions

0.0(0)
studied byStudied by 1 person
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/85

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

86 Terms

1
New cards

sin (θ) is

opposite/hypotenuse && y-coordinate/radius

2
New cards

cos (θ) is

adjacent/hypotenuse && x-coordinate/radius

3
New cards

tan (θ) is

opposite/adjacent && y-coordinate/x-coordinate

4
New cards

cot (θ) is

adjacent/opposite && 1/[tan (θ)] && x-coordinate/y-coordinate

5
New cards

csc (θ) is

hypotenuse/opposite && 1/[sin (θ)] && radius/y-coordinate

6
New cards

sec (θ) is

hypotenuse/adjacent && 1/[cos (θ)] && radius/x-coordinate

7
New cards

sin (-θ)

-sin (θ)

8
New cards

cos (-θ)

cos (θ)

9
New cards

sin (30)=cos (60)

1/2

10
New cards

sin (45)=cos (45)

√2/2

11
New cards

sin (60)=cos (30)

√3/2

12
New cards

cos (30)=sin (60)

√3/2

13
New cards

cos (45)=sin (45)

√2/2

14
New cards

cos (60)=sin (30)

1/2

15
New cards

tan (30)

√3/3

16
New cards

tan (45)

1

17
New cards

tan (60)

√3

18
New cards

cof: sin θ=

cos (90-θ)

19
New cards

cof: cos θ=

sin (90-θ)

20
New cards

cof: tan θ=

cot (90-θ)

21
New cards

cof: cot θ=

tan (90-θ)

22
New cards

cof: sec θ=

csc (90-θ)

23
New cards

cof: csc θ=

sec (90-θ)

24
New cards

coterminal

if two or more angles have the same terminal (ending) side, the angles are said to be coterminal.
To do this, add or subtract multiples of 360

25
New cards

positive rotation

counter clockwise

26
New cards

negative rotation

clockwise

27
New cards

Unit circle

Quadrants:
1(Positive: all, negative: none)
2(Positive: sin, negative: cos, tan)
3(Positive: tan, negative: sin, cos)
4(Positive: cos, negative: sin, tan)

28
New cards

sin (θ)=

90=1
180=0
270=-1
360=0

29
New cards

cos (θ)=

90=0
180=-1
270=0
360=1

30
New cards

tan (θ)=

90=undefined
180=0
270=undefined
360=0

31
New cards

Radian measure equation

θ=s/r

32
New cards

Basic circular functions

the arc lengths on the unit circle is the same as the radian measure of the angle θ

33
New cards

sin s =

second coordinate=y

34
New cards

cos s=

first coordinate=x

35
New cards

tan s=

second coordinate/first coordinate=y/x (x≠0)

36
New cards

csc s=

1/second coordinate=1/y (y≠0)

37
New cards

sec s=

1/first coordinate=1/x (x≠0)

38
New cards

cot s=

first coordinate/second coordinate=1/y (y≠0)

39
New cards

tan (-x)=

-tan x

40
New cards

(sin s)^2+(cos s)^2=

1

41
New cards

(csc s)^2-(cot s)^2=

1

42
New cards

(sec s)^2-(tan s)^2=

1

43
New cards

sin θ=

cos (pi/2-θ)

44
New cards

cos (u+v)=

(cos u)(cos v)-(sin u)(sin v)

45
New cards

cos (u-v)=

(cos u)(cos v)+(sin u)(sin v)

46
New cards

cos α=

sin (pi/2-α)

47
New cards

sin (u-v)=

(sin u)(cos v)-(cos u)(sin v)

48
New cards

sin (u+v)=

(sin u)(cos v)+(cos u)(sin v)

49
New cards

tan (u-v)=

[(tan u)-(tan v)]/[1+(tan u)(tan v)]

50
New cards

tan (u+v)=

[(tan u)+(tan v)]/[1-(tan u)(tan v)]

51
New cards

csc (-θ)=

-csc (θ)

52
New cards

cosecant graph

Period: 2pi
Domain: All real numbers except k(pi), where k is an integer
Range: (-∞, -1] U [1, ∞)

53
New cards

sine graph

Period: 2pi
Domain: All real numbers
Range: [-1, 1]
Amplitude: 1
Odd: sin(-s)=-sin s (goes from left to right up) origin: (0,0)

54
New cards

cosine graph

Period: 2pi
Domain: All real numbers
Range: [-1, 1]
Amplitude: 1
Even: cos(-s)=cos s Origin: (0,1)

55
New cards

tangent graph

Period: pi
Domain: All real numbers except (pi/2)+k(pi)
Range: All real numbers (right(down) to left (up))

56
New cards

cotangent graph

Period: pi
Domain: All real numbers except k(pi), where k is an integer
Range: All real numbers (right(up) to left (down))

57
New cards

secant graph

Period: 2pi
Domain: All real numbers except (pi/2)+k(pi), where k is an integer
Range: (-∞, -1] U [-1, ∞)

58
New cards

negative angle identities

sin(-X) = - sinX , odd function

csc(-X) = - cscX , odd function

cos(-X) = cosX , even function

sec(-X) = secX , even function

tan(-X) = - tanX , odd function

cot(-X) = - cotX , odd function

59
New cards

Double Angle identities

sin(2x)=2 sin x cos x
cos(2x)=(cos x)(cos x)-(sin x)(sin x)
tan(2x)=(2 tan x)/(1-tan^2 x)

60
New cards

Half Angle identities

sin x/2=±sqrt[(1-cos x)/2]
cos x/2=±sqrt[(1+cos x)/2]
tan x/2=±sqrt[(1-cos x)/(1+cos x)]

61
New cards

Inverse sine function

y=sin^-1 x
Domain: [-1,1] Range: [-pi/2, pi/2]

62
New cards

inverse cosine function

y=cos^-1 x
Domain: [-1,1] Range: [0,pi]

63
New cards

inverse tan function

y=tan^-1 x
Domain: (-∞,∞) Range: [-pi/2, pi]

64
New cards

sine compositions

sin(sin^-1 x)=x
sin^-1(sin x)=x

65
New cards

cosine compositions

cos(cos^-1 x)=x
cos^-1(cos x)=x

66
New cards

tan compositions

tan(tan^-1 x)=x
tan^-1(tan x)=x

67
New cards

Law of sines

a/sin(A)=b/sin(B)=c/sin(C)

68
New cards

Law of cosines

a^2=b^2+c^2-2bc(cos(A))
b^2=a^2+c^2-2ac(cos(B))
c^2=a^2+b^2-2ab(cos(C))

69
New cards

SSS, SAS

Law of cosines

70
New cards

ASA, AAS, SSA

Law of sines

71
New cards

AAA

Nothing, unsolvable

72
New cards

Absolute value of Complex Number

|a+bi|=sqrt(a^2+b^2)=r

73
New cards

Trigonometric Notation for Complex Numbers

a+bi=r(cos x+ i sin x)

74
New cards

sin x

b/r, b=r sin x

75
New cards

cos x

a/r, a=r cos x

76
New cards

Complex Numbers: Multiplication Trig Notation

r(cos x1 + i sin x1)*r2(cos x2+ i sin x2)
= r*r2(cos (x1+x2)+ i sin (x1+x2))

77
New cards

Complex Numbers: Division Trig Notation

r(cos x1+i sin x1)/r2(cos x2 + i sin x2)=
r/r2[cos (x1-x2)+ i sin(x1-x2)]

78
New cards

Demoivre's Theorem

For any complex number r(cos x + i sin x) and any natural number n,
[r(cos x + i sinx)]^n= r^n(cos nx+ i sin nx)

79
New cards

Roots of Complex Numbers

The nth roots of a complex numbers r(cos x+ i sin x), r !=0, are given by
r^(1/n)[cos (x/n+ k*360/n) + i sin (x/n+ k*360/n)]
where k=0, 1, 2, ....., n-1

80
New cards

convert polar coordinates

r=sqrt(x^2+y^2)
cos θ= x/r x=r cos θ
sin θ= y/r y=r sin θ
tan θ=y/x

81
New cards

convert equations

substitute r cos θ and r sin θ for x and y
and sqrt(x^2+y^2) for r

82
New cards

x-4+4y=y^2

Only one variable is squared, so this cannot be a circle, an ellipse or a hyperbola. Find an equivalent equation: x=(y-2)^2
This is the equation of a parabola

83
New cards

3x^2+3y^2=75

both variables are squared, so this cannot be a parabola. The squared terms are added, so this cannot be a hyperbola. Divide by 3 on bothsides to find an equivalent equation.
x^2+y^2=25, this is the equation of a circle.

84
New cards

y^2=16-4x^2

Both variables are squared so this cannot be a parabola. Add 4x^2 on bothsides to find an equivalent equation: 4x^2+y^2=16. The squared terms are added, so this cannot be a hyperbola. The coefficients of x^2 and y^2 are not the same, so this is not a circle. Divide by 16 on both side to find an equivalent equation.
x^2/4+y^2/16=1
Equation of an ellipse

85
New cards

x^2=4y^2+36

Both variables are squared, so this cannot be a parabola. Subtract 4y^2 on both sides to find an equivalent equation: x^2-4y^2=36. The squared terms are not added so this cannot be a circle or ellipse. Divide by 36 on both sides to find an equivalent equation.
x^2/36-y^2/9=1
This is the equation of a hyperbola.

86
New cards

rotation of axes (x)

x=x' cos θ- y'sin θ
x'=x cos θ+y sin θ
y=x' sin θ+y' cos θ
y'=-x sin θ+ y cos θ