1/13
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
How to calculate direction cosine in i direction
a = (i, j , k)
1) Modulus = √(i)² + (j)² + (k)²
2) i / modulus
Scalar Multiplication / Dot product
a.b = a₁b₁ + a₂b₂ + a₃b₃
ADD TOGETHER
Scalar Multiplication in geometric form
a.b = |a|x|b|xcos(θ)
2 forms of distributive law
a . (λb) = (aλ).b = λ(a.b)
a.(b+c) = a.b + a.c
How to find unit vector perpendicular to two vectors
1) a x b
2) modulus
3) (1/modulus) (a x b)
How to prove 3 vectors are coplanar
If scalar triplet = 0, then coplanar.
1) b x c
2) a . [b x c]
Vector Product
a = a₁, a₂ , a₃
b = b₁, b₂ , b₃
a x b = ((a₂b₃) - (a₃b₂)) , - ((a₁b₃) - (a₃b₁)) , ((a₁b₂) - (a₂b₁))
DONT ADD TOGETHER
Vector Product in geometric form
a x b = |a| x |b| x sinθ
How to find component of a force ( F = a, b ,c) in direction (x,y,z) ABOUT ORIGIN
1) r = (x, y, z)
2) F . r
3) Modulus r
4) component = (F.r) / modulus r
Moment of a force
M = r x F
or
M = |r| x |F| x sinθ
Moment of a force about a point
Subtract original r from point
ie/ (r₁ r₂ r₃) - (p₁ p₂ p₃)
Area of a triangle
1) XY
2) XZ
3) XY x XZ
4) Modulus of this
5) divide by two
Equation of a straight line between two points (a & b)
1) find line ab (-OA + OB)
2) r = a + t(b-a)
sub in the values of the vectors for a and b-a