1/19
PHYS2710 - Modern Physics
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
Relationship Between Frequency and Period
f=\frac{1}{T}
Position in SHM with φ = 0.00
x\left(t\right)=A\cos\left(\omega t\right)
General Position in SHM
x\left(t\right)=A\cos\left(\omega t+\varphi\right)
General Velocity in SHM
v\left(t\right)=-A\omega\sin\left(\omega t+\varphi\right)
General Acceleration in SHM
a\left(t\right)=-A\omega^2\cos\left(\omega t+\varphi\right)
Maximum Displacement (Amplitude) of SHM
x_{\max}=A
Maximum velocity of SHM
\left|v_{\max}\right|=A\omega
Maximum Acceleration of SHM
\left|a_{mac}\right|=A\omega^2
Angular Frequency of a Mass-Spring System in SHM
\omega=\sqrt{\frac{k_{s}}{m}}
Period of a Mass-Spring System in SHM
T=2\pi\sqrt{\frac{m}{k_{s}}}
Frequency of a Mass-Spring System in SHM
f=\frac{1}{2\pi}\sqrt{\frac{k_{s}}{m}}
Energy in a Mass-Spring System in SHM
E_{total}=\frac12k_{s}x^2+\frac12mv^2=\frac12k_{s}A^2
The Velocity of the Mass in a Spring-Mass System in SHM
v=\pm\sqrt{\frac{k_{s}}{m}\left(A^2-x^2\right)}
The x-Component of the Radius of a Rotating Disk
x\left(t\right)=A\cos\left(\omega t+\varphi\right)
The x-Component of the Velocity of the Edge of a Rotating Disk
v\left(t\right)=-v_{\max}\sin\left(\omega t+\varphi\right)
The x-Component of the Acceleration of the Edge of a Rotating Disk
a\left(t\right)=-a_{\max}\cos\left(\omega t+\varphi\right)
Force Equation for a Simple Pendulum
\dfrac{d^2\theta}{dt^2}=-\frac{g}{L}\theta
Angular Frequency for a Simple Pendulum
\omega=\sqrt{\frac{g}{L}}
Period of a Simple Pendulum
T=2\pi\sqrt{\frac{L}{g}}
Newton’s Second Law for Harmonic Motion
m\dfrac{d^2x}{dt^2}+b\dfrac{dx}{dt}+kx=0