1/9
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
=1+x+x²+... +xⁿ+...
=∑xⁿ
(|x|<1)
=1-x+x²+... +(-x)ⁿ+...
=∑(-1)ⁿxⁿ
(|x|<1)
=1+x+x²/2!+...+xⁿ/n!+...
=∑xⁿ/n!
(all real x)
=1-x³/3!+x⁵/5!-...+(-1)ⁿ((x²ⁿ⁺¹)/(2n+1)!)+...
=∑(-1)ⁿ((x²ⁿ⁺¹)/(2n+1)!)
(all real x)
=1-x²/2!+x⁴/4!-...+(-1)ⁿ⁻¹(xⁿ/(2n)!)+...
=∑(-1)ⁿ⁻¹(xⁿ/(2n)!)
(all real x)
=x-x²/2+x³/3-...+(-1)ⁿ⁻¹(xⁿ/n)+...
=∑(-1)ⁿ⁻¹(xⁿ/n)
(-1<x≤1)
=x-x³/3+x⁵/5-...+(-1)ⁿ((x²ⁿ⁺¹)/(2n+1))+...
=∑(-1)ⁿ((x²ⁿ⁺¹)/(2n+1))
(|x|≤1)
ƒ(a)+ƒ'(a)(x-a)+(ƒ''(a)/2!)(x-a)...(ƒⁿ(a)/n!)(x-a)ⁿ
=∑(ƒⁿ(a)/n!)(x-a)ⁿ
polar arc length
∫ab sqrt (1+(f′(x))²) dx