24-25 Muscle Physiology

0.0(0)
studied byStudied by 6 people
learnLearn
examPractice Test
spaced repetitionSpaced Repetition
heart puzzleMatch
flashcardsFlashcards
Card Sorting

1/10

encourage image

There's no tags or description

Looks like no tags are added yet.

Study Analytics
Name
Mastery
Learn
Test
Matching
Spaced

No study sessions yet.

11 Terms

1
New cards

Functional Morphology of Skeletal Muscle

  • MuscleFascicles (bundles) → Muscle Fiber (cell) → MyofibrilsMyofilaments (actin/myosin).

  • Muscles are composed of fascicles (bundles of muscle fibers).

  • Muscle Fiber (Cell): Long, cylindrical cell with multiple nuclei. Contains:

    • Myofibrils: Thread-like structures packed with actin (thin filaments) and myosin (thick filaments)

    • Sarcolemma connects to tendons

    • Sarcoplasmic Reticulum (SR): Calcium storage network surrounding myofibrils.

    • T-Tubules: Invaginations of the sarcolemma that transmit action potentials to the SR.

  • Supportive layers of connective tissue surround muscle fibres

    • Endomysium – surrounds individual muscle fibres

    • Perimysium – surrounds a bundle of muscle fibres forming a fascicle (functional unit)

    • Epimysium – surrounds the entire muscle

  • Sarcomere: Functional unit of contraction, bounded by Z-discs (anchor actin). Contains:

    • A-band: Dark region with overlapping actin and myosin.

    • I-band: Light region with actin only.

    • H-zone: Central region of A-band with myosin only (shortens during contraction).

  • Titin: Giant elastic protein connecting myosin to Z-discs, maintaining sarcomere structure.

<ul><li><p><strong>Muscle</strong> → <strong>Fascicles</strong> (bundles) → <strong>Muscle Fiber</strong> (cell) → <strong>Myofibrils</strong> → <strong>Myofilaments</strong> (actin/myosin).</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Muscles</mark></strong> are composed of <strong>fascicles</strong> (bundles of muscle fibers).</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Muscle Fiber (Cell)</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>Long, cylindrical cell with multiple nuclei.</strong> Contains:</p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Myofibrils</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> Thread-like structures packed with <strong>actin</strong> (thin filaments) and <strong>myosin</strong> (thick filaments)</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Sarcolemma</mark></strong> connects to tendons</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Sarcoplasmic Reticulum (SR)</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>Calcium storage network</strong> surrounding myofibrils.</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">T-Tubules</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> Invaginations of the <strong>sarcolemma</strong> that transmit <strong>action potentials to the SR.</strong></p></li></ul></li><li><p>Supportive layers of connective tissue surround muscle fibres</p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Endomysium</mark></strong> – surrounds<strong> individual</strong> muscle fibres</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Perimysium</mark></strong> – surrounds a <strong>bundle of muscle fibres forming a fascicle </strong>(functional unit)</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Epimysium</mark></strong> – surrounds the<strong> entire</strong> muscle</p></li></ul></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Sarcomere</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> Functional unit of contraction, bounded by <strong>Z-discs</strong> (anchor actin). Contains:</p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">A-band</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>Dark</strong> region with overlapping <strong>actin and myosin.</strong></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">I-band</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>Light </strong>region with <strong>actin only.</strong></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">H-zone</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>Central</strong> region of A-band with <strong>myosin only </strong>(shortens during contraction).</p></li></ul></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Titin</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>Giant elastic protein</strong> connecting <strong>myosin to Z-discs</strong>, maintaining sarcomere structure.</p></li></ul><p></p>
2
New cards

Mechanism of Contraction of Skeletal Muscle: Sliding Filament Theory

  1. Excitation-Contraction Coupling:

    • Motor neuron releases ACh, triggering muscle membrane depolarization

    • AP generated at the neuromuscular junction travel along the sarcolemma and down into the transverse tubule (T-tubule) system to depolarise the cell membrane

    • Depolarisation of the sarcolemma → opening of voltage-gated L-type Ca2+ channels (dihydropyridine receptors), allowing Ca2+ to enter the cell

    • Ca2+ influx leads to activation of ryanodine receptors located in the SR, which allows Ca2+ to flow from the SR into the cytoplasm and further increases intracellular Ca2+ concentration

    • Ca2+ binds to troponin-c, inducing a conformational change which exposes a binding site on actin for the myosin head

    • Results in ATP hydrolysis, providing energy for the actin and myosin filaments to slide past each other and shorten the sarcomere length, thereby initiating muscle contraction

  2. Cross-Bridge Cycling:

    • Attachment: Myosin heads (energized by ATP hydrolysis) bind actin.

    • Power Stroke: Myosin heads pivot, pulling actin toward sarcomere center (ADP + Pi released).

    • Detachment: ATP binds myosin head releases actin.

    • Reset: ATP split to ADP + Pi by myosin ATPase → head repositions for next cycle.

    • "Walk-Along" Mechanism: Repeated cycles cause filaments to slide, shortening sarcomeres (I-bands narrow; H-zone disappears).

  3. Relaxation:

    • Ca²⁺ Reuptake: SR’s Ca²⁺-ATPase pumps Ca²⁺ back into SR.

    • Tropomyosin re-blocks actin sites → muscle returns to resting length (passive process)

<ol><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Excitation-Contraction Coupling</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark></p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Motor neuron releases ACh</mark></strong>, triggering muscle membrane depolarization</p></li><li><p>AP generated at the neuromuscular junction travel along the <strong>sarcolemma</strong> and down into the transverse tubule (<strong>T-tubule</strong>) system to depolarise the cell membrane</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Depolarisation of the sarcolemma → opening of voltage-gated L-type Ca<sup>2+</sup> channels</mark></strong> (dihydropyridine receptors), <strong>allowing Ca<sup>2+</sup> to enter the cell</strong></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Ca<sup>2+</sup> influx leads to activation of ryanodine receptors located in the SR</mark></strong>, which allows <strong>Ca<sup>2+</sup> </strong>to flow from the SR into the cytoplasm and further <strong>increases intracellular Ca<sup>2+</sup> concentration</strong></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Ca<sup>2+</sup> binds to troponin-c,</mark></strong> inducing a <strong>conformational change </strong>which <strong><mark data-color="red" style="background-color: red; color: inherit">exposes a binding site on actin for the myosin head</mark></strong></p></li><li><p>Results in <strong>ATP hydrolysis,</strong> providing <strong><mark data-color="red" style="background-color: red; color: inherit">energy for the actin and myosin filaments to slide past each other and shorten the sarcomere length</mark></strong>, thereby<strong> initiating muscle contraction</strong></p></li></ul></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Cross-Bridge Cycling</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark></p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Attachment</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: </mark><strong>Myosin heads</strong> (energized by ATP hydrolysis) <strong>bind actin.</strong></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Power Stroke</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: </mark>Myosin heads pivot, <strong>pulling actin toward sarcomere center</strong> (ADP + Pi released).</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Detachment</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>ATP binds myosin </strong>→<strong> head releases actin.</strong></p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Reset</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> <strong>ATP split to ADP + Pi by myosin ATPase</strong> → head repositions for next cycle.</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">"Walk-Along" Mechanism</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: </mark>Repeated cycles cause filaments to slide, shortening sarcomeres (<strong>I-bands narrow; H-zone disappears</strong>).</p></li></ul></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Relaxation</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark></p><ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Ca²⁺ Reuptake</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> SR’s <strong>Ca²⁺-ATPase</strong> pumps Ca²⁺ back into SR.</p></li><li><p><strong>Tropomyosin re-blocks actin </strong>sites → muscle returns to <strong>resting length (passive process)</strong></p></li></ul></li></ol><p></p>
3
New cards

Energetics of Contraction of Skeletal Muscle

  • ATP Roles:

    • Powers myosin detachment and resetting.

    • Fuels Ca²⁺ pumps in SR.

  • Creatine Phosphate: Rapidly regenerates ATP during short bursts.

  • Fatigue: Caused by ATP depletion, lactic acid buildup, or ion imbalances (K⁺, Ca²⁺).

  • Oxygen Debt: Excess post-exercise O₂ consumption to replenish ATP, clear lactate, and restore ions.

4
New cards

Types of Skeletal Muscle Contractions

  • Isotonic: shortens against a constant load (e.g., lifting weights).

  • Isometric: Muscle tension without shortening (e.g., holding a plank).

  • Eccentric: lengthens under tension (e.g. lowering a lift slowly)

  • Summation: rapid stimuli → increased force → graded muscle response

  • Tetanus: fused stimuli → sustained contraction/no relaxation → maximal muscle force

  • Twitch: Single contraction-relaxation cycle

5
New cards

Muscle Fiber Types

knowt flashcard image
6
New cards

Skeletal Muscle Work & Fatigue

  • Work = Force × Distance.

  • Power = Work/Time.

  • Fatigue Mechanisms:

    • Peripheral: ATP depletion, lactic acid buildup, ionic imbalances (K⁺, Ca²⁺), glycogen loss.

    • Central: CNS inhibition (protective mechanism).

  • Recovery: Requires O₂ to restore ATP, clear lactate, and normalize ions.

7
New cards

Electromyography (EMG)

  • Principle: Records electrical activity of muscle fibers during contraction.

    • Motor Unit Action Potentials (MUAPs): Summed depolarization of fibers in a motor unit.

  • Clinical Uses:

    • Diagnose neuromuscular disorders (e.g., myasthenia gravis, ALS).

    • Assess muscle recruitment patterns in sports science.

    • Hypertrophy: Resistance trainingincreased myofibrils (not cell number).

    • Atrophy: Disuse proteolysis (e.g., bed rest, denervation).

    • Denervation: Muscle fibers atrophy; replaced by fibrous tissue (contractures if untreated).

    • Rigor Mortis: Post-mortem ATP depletionpermanent cross-bridge attachment (stiffness).

    • Muscular Dystrophy: Genetic defects in dystrophin → sarcolemma instability.

    • Myasthenia Gravis: Autoimmune attack on ACh receptors → muscle weakness.

8
New cards

Functional Morphology of Smooth Muscles

  • No Sarcomeres: Actin/myosin arranged in lattice (attached to dense bodies).

  • Caveolae: Membrane invaginations (store Ca²⁺, similar to T-tubules).

  • Gap Junctions: Allow electrical coupling in unitary smooth muscle (e.g., gut).

  • Unitary (Single-Unit) Smooth Muscle:

    • Structure: Sheets of fibers connected by gap junctions (electrical syncytium)

    • Control: Self-excitatory (pacemaker cells), hormones, stretch, or neurotransmitters

    • Example: Gut, uterus, blood vessels (visceral organs)

  • Multi-Unit Smooth Muscle:

    • Structure: Discrete, independent fibers (no gap junctions)

    • Control: Primarily by autonomic nerves (e.g., iris muscles, piloerector muscles)

    • Example: Adjusts pupil size or causes hair erection

<ul><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">No Sarcomeres</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: </mark><strong>Actin/myosin</strong> arranged in <strong>lattice</strong> (attached to <strong>dense bodies</strong>).</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Caveolae</mark></strong><mark data-color="red" style="background-color: red; color: inherit">: </mark>Membrane invaginations (<strong>store Ca²⁺, similar to T-tubules</strong>).</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Gap Junctions</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark> Allow <strong>electrical coupling</strong> in <strong>unitary smooth muscle</strong> (e.g., gut).</p></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Unitary (Single-Unit) Smooth Muscle</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark></p><ul><li><p><strong>Structure</strong>: Sheets of fibers connected by <strong>gap junctions</strong> (<mark data-color="red" style="background-color: red; color: inherit">electrical syncytium</mark>)</p></li><li><p><strong>Control</strong>: <mark data-color="red" style="background-color: red; color: inherit">Self-excitatory</mark> (<strong>pacemaker cells</strong>), <mark data-color="red" style="background-color: red; color: inherit">hormones, stretch, or neurotransmitters</mark></p></li><li><p>Example:<strong> Gut, uterus, blood vessels </strong>(visceral organs)</p></li></ul></li><li><p><strong><mark data-color="red" style="background-color: red; color: inherit">Multi-Unit Smooth Muscle</mark></strong><mark data-color="red" style="background-color: red; color: inherit">:</mark></p><ul><li><p><strong>Structure</strong>: Discrete, independent fibers (<mark data-color="red" style="background-color: red; color: inherit">no gap junctions</mark>)</p></li><li><p><strong>Control</strong>: Primarily by <strong><mark data-color="red" style="background-color: red; color: inherit">autonomic nerves</mark></strong> (e.g., iris muscles, piloerector muscles)</p></li><li><p>Example:<strong> Adjusts pupil size or causes hair erection</strong></p></li></ul></li></ul><p></p>
9
New cards

Excitation & Electrophysiology of Smooth Muscle

  • Depolarization Mechanisms:

    • Autonomic Nerves: Release ACh/norepinephrine → activate receptors.

    • Pacemaker Cells: Generate slow waves (e.g., gut interstitial cells of Cajal).

    • Stretch: Opens mechanosensitive channels → depolarization.

  • Action Potentials:

    • Spike Potentials: Brief (10–50 ms) → phasic contractions (e.g., peristalsis).

    • Plateau Potentials: Sustained depolarization → tonic contractions (e.g., blood vessels).

10
New cards

Smooth Muscle - Mechanism of Contraction

  • Membrane depolarisation → open L-type voltage-gated calcium channels → extracellular Ca²⁺ enters the cell down its concentration gradient

  • Calmodulin-Dependent:

    • Intracellular Ca²⁺ binds calmodulin → activates myosin light-chain kinase (MLCK) phosphorylates myosin → cross-bridge cycling.

    • Latch State: Myosin phosphatase dephosphorylates myosin → slow detachment → sustained tension.

  • Calcium Sources:

    • Extracellular: Via voltage-gated (L-type) or receptor-operated channels

    • Sarcoplasmic Reticulum: IP₃ or Ca²⁺-induced Ca²⁺ release

  • Latch Mechanism:

    • Sustained contraction with minimal ATP use.

    • Myosin remains attached to actin even after dephosphorylation (via myosin phosphatase).

  • Cross-bridge cycling is slower than in skeletal muscle → energy-efficient, prolonged contractions

11
New cards

Smooth Muscle Disorders

  • Hypertension: Overactivation of vascular smooth muscle (e.g., angiotensin II, endothelin).

  • Asthma: Bronchial smooth muscle contraction (treated with β₂-agonists like albuterol).

  • Erectile Dysfunction: Smooth muscle relaxation in penile arteries mediated by NO (treated with PDE5 inhibitors like sildenafil).

  • Tocolytics: Drugs that relax uterine smooth muscle (e.g., magnesium sulfate to delay preterm labor).