1/30
Looks like no tags are added yet.
Name | Mastery | Learn | Test | Matching | Spaced |
---|
No study sessions yet.
d/dx [x^n] = nx^n-1
power rule
d/dx = [kx] = k
constant
d/dx [uv] = u’v +uv’
product rule
d/dx [u/v] = (u’v - uv’)/ v²
quotient rule
d/dx [sinx] = cosx
sine
d/dx [cosx] = -sinx
cosine
d/dx [tanx] = sec²x
tangent
d/dx [cotx] = -csc²x
cotangent
d/dx [secx] = tanxsecx
secant
d/dx [cscx] = -cscxcotx
cosecant
d/dx [f(g(x)] = f’(g(x)) * g’(x)
chain rule
d/dx [sin^-1x] = 1/√(1-x²)
inverse sine
d/dx [cos^-1] = - 1/√(1-x²)
inverse cosine
d/dx [tan^-1] = 1/1+x²
inverse tangent
d/dx [cot^-1] = -1/1+x²
inverse cot
d/dx [sec^-1] = 1/|x| √(x²-1)
inverse secant
d/dx [csc^-1] = -1/|x| √(x²-1)
inverse cosecant
d/dx [e^x]= e^x
exponential
d/dx [lnx] = 1/x
natural log
d/dx [a^x] = a^x * ln(a)
constant to a power
d/dx [log(basea) x] = 1/xlna
logarithmic function
d/dx [f^-1(x)] = 1/f’(f^-1(x))
inverse functions
∫f(x) dx [a,a] = 0
zero rule
∫f(x) dx [a,b] + ∫f(x) dx [b,c] = ∫f(x) dx [a,c]
additivity
∫f(x) dx [b,a] = - ∫f(x) dx [a,b]
order of integration
∫kf(x) dx [a,b] = k ∫f(x) dx [a,b]
constant multiple (divide out constant)
∫(f(x) ± g(x)) dx [a,b] = ∫f(x) dx [a,b] ± ∫fg(x) dx [a,b]
sum/ difference
f(x) >/= g(x) on [a.b] → ∫f(x) dx [a,b] >/= ∫g(x) dx [a,b]
f(x) >/= 0 on [a.b] → ∫f(x) dx [a,b] >/= 0
domination
a(f) = 1/ b-a ∫f(x) dx [a,b]
average mean value theorem
∫f(t) dt [a,x] = F(x) - F(a)
fundamental theorem of calculus
d/dx ∫f(t) dt [a,x] = f(x)
derivative of an antiderivative